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Abstract

The paper investigates the connection between concentration and fragility in over-the-

counter (OTC) markets. I argue that the increase in spreads in OTC markets during a

crisis reflects an increase in dealer mark-ups and not merely an increase in dealer costs of

facilitating trade. Using Regulatory TRACE data on the US Corporate Bonds market,

I construct a bond-level HH-index to gauge concentration in the market for each bond.

Focusing on the COVID-19 crisis that emerged in the first quarter of 2020, I show that

concentrated markets exhibit a greater increase in spreads and a stronger decline in trade

volumes during a crisis. I present a model in which trade in a bond is led by dealers who

acquire information about it. Systemic distress incentivizes informed dealers to exercise

market power more aggressively by submitting low bids that appeal solely to distressed

customers. When calibrated to the behavior of spreads across different concentration

levels before and during the COVID-19 crisis, the model successfully reproduces the data,

including the response of volume to the crisis, which was not targeted. Additionally, the

calibration demonstrates that the increased uncertainty during the COVID-19 crisis was

key for concentration to exacerbate the severity of the crisis as much as it did.
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1 Introduction

One of the main functions of financial markets is to provide liquidity. However, often in times of

systemic distress, financial markets exhibit a sharp decline in trade volume alongside an increase

in the cost of trade (measured by the bid-ask spread). The deterioration in trade conditions

limits investors’ ability to raise liquidity by selling securities (see Gorton and Metrick (2012)).

Furthermore, it often increases the cost of credit, hereby impairing real economic activity (Bao

et al. (2011)). Through these channels, it amplifies a financial crisis. A prime example of such

amplification is the dramatic decline in trade in the market for Mortgage-Backed Securities that

was central to the 2008-2009 financial crisis. Other instances of a dramatic decline in liquidity

of large and important financial markets during economic downturns include the real-estate

bonds and corporate bonds market in the great depression (1931), the junk bonds market in

the early 1990s recession (1990), the market for Collateralized Bond Obligations following the

burst of the Dot.com bubble (2001), and the markets for Collateralized Debt Obligations (CDO),

Asset-Backed Securities (ABS), Commercial Papers and Corporate Bonds in the 2008 crisis, and

more (for a full review see Benmelech and Bergman (2018)).

The decline in activity in financial markets is by no means a self-evident implication of systemic

distress. In fact, times of distress appear to be times when market participants can gain the

most from reallocating liquidity through trade. A key to understanding the dynamics of such a

“freeze” in trade is that all markets that were subject to it share a critical trait: they are all .

Decentralized markets, also known as Over-the-Counter (OTC) financial markets, are markets

that lack a central trading platform. Trade in such markets consists mostly of bilateral trades

between investors and designated intermediaries, ”dealers”, who operate as market makers. The

claim that the OTC trading protocol itself explains the fragility of financial markets gained

much traction after the 2007-2009 crisis, in which, as Chiu and Koeppl (2016) point out: “there

was a stunning difference in how asset markets were affected according to their infrastructure.

Markets with centralized trading functioned rather well. To the contrary, in over-the-counter

markets... trading came to a halt’ ’.

Some have argued that the fragility of OTC markets originates from the dependence of trade on

the performance of the dealer sector (see, for example, Bao et al. (2018) Dick-Nielsen and Rossi
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(2019), Duffie (2020), Kargar et al. (2021)). According to such views, heightened demand for

liquidity during a crisis exhausted dealers’ capacity to absorb securities to their balance sheets

as a part of their market-making activities. That, along with greater uncertainty and potential

weakening of the balance sheet, leads dealers to require higher compensation for their services,

that is, to charge higher spreads.

Such views that emphasize the impact of systemic distress on dealers holding costs seem to

explain at least some of the dynamics of a “market freeze”. However, they cannot account for

a salient pattern in the data: during times of distress, a dealer who buys a security from a

customer purchases it for a substantial discount compared to what it would have paid if she had

bought it from another dealer 1. Evidently, the holding cost of the security for the dealer who

purchased it is the same, regardless of the identity of its seller. Thus, the widening gap seems to

reflect a rise in a mark-up component. Customers pay higher markups because they are less

integrated into the market and have limited access to alternative counter-party for trade.

In this paper, I am guided by the idea that the rise in spreads in OTC markets reflects an

increase in the mark-ups they charge their customers, rather than merely an increase in the cost

of facilitating trade. In other words, dealers prey on the dire need for liquidity among their

customers to charge higher spreads. As a result, they get to facilitate lower volumes of trade. In

this sense, some of the deterioration of trading conditions in OTC markets in times of crisis

should be understood in terms of monopolistic inefficiency.

Beyond the empirical pattern mentioned above, the claim that market power will create a more

substantial disruption in OTC markets during a crisis has a strong intuitive appeal. Consider a

dealer who has a monopoly on trading a specific bond. She faces a trade-off between charging

higher spreads (bidding low) and increasing the quantity traded. During a crisis, distressed

players are eager to sell, even at a significant discount. From the dealer’s perspective, this means

that an increase in the spreads she charges will have a weaker impact on the volume of trade

that she gets to facilitate. This, in turn, makes it optimal to submit lower bids that only appeal

to these distressed players. Doing so will result in higher realized spreads and a decline in the

1This pattern is implied by papers that used the gap between the inter-dealer and customer-to-dealer prices
to gauge spreads. For example, Choi et al. (2021) propose a measure of the gap between inter-dealer pricing and
customer-dealer pricing and show that it increased by a factor of five during the 2008 financial crisis. In the
following, I document the widening gap between inter-dealer and customer-dealer prices in a crisis more directly,
to ensure that it does not emerge from peculiar properties of measures used in past literature.
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volume of trades. Note that this is just a manifestation of a more general principle - as demand

becomes less elastic, a monopoly (or any player with market power) transitions towards charging

higher mark-ups and reducing production.

Naturally, this reasoning raises a second question that will guide this work: Do dealers have

substantial market power, and if so, what is its origin?. Dealers’ market power may seem

somewhat surprising, as OTC market making appears, on the face of it, like a competitive

field of operation. As I shall discuss below, these markets are typically populated by hundreds

of dealers, including many well-known prominent players. Thus, customers will seldom have

difficulty finding multiple alternatives for a dealer to trade with.

I explore these questions empirically and theoretically using Regulatory TRACE of the US

Corporate Bonds Market, an exclusive version of the TRACE data set that provides dealer

identities. Using dealer identities, I uncover a critical feature of the US Corporate Bonds Market -

its segmentation. That is, I show that the trade in each specific bond in the market is dominated

by a few dealers. For example, for the median bond, the four most prominent dealers trade it

account for 60% of transactions and 78% of trade. Hence, although many dealers populate the

market, a customer wishing to sell a bond might face very few potential buyers.

The cross-sectional difference in concentration between bonds is used to explore how market

power affects the response to systemic distress. Guided by the intuition that dealers exploit

customers’ urgent need for liquidity to charge higher spreads, I focus on transactions in which

customers sell to dealers. Applying regression analysis, I show that given two similar bonds,

the one traded in a more concentrated market typically exhibits a greater increase in its spread

during a crisis period. This is true even if the same dealer conducts the trade in both bonds.

The pattern repeats itself in both the COVID-19 crisis of March-April 2020 and the 2007-2009

crisis. Using regression analysis, I show that it persists when controlling for the most likely

confounders, including dealer identity, risk (rating), bond liquidity, and the expected holding

time of the bond by the dealer. Even when including these controls, we find sizeable differences

in the response of spreads to a crisis between similar bonds traded in markets with varying levels

of competition. Specifically, the analysis implies that in a world where all bonds would have been

traded in a highly competitive setting, the aggregate increase in spreads during the COVID-19

crisis would have been at least 20% higher than it actually was. Although this prediction is
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not a precious gauge of the impact of competition on trading conditions in times of distress, it

indicates that it has a relatively large order of magnitude.

In addition, the data is used to document stylized facts about concentration in OTC markets

that may shed light on its origin. I show that most dealers are highly specialized. The lion’s

share of a dealer’s activity consists of trading heavily on a subset of bonds for which the dealer

is a dominant player (accounts for much of the trade). At the same time, even large dealers

avoid many of the bonds traded on the market. These patterns are reminiscent of an entry cost

to the market for each - either a dealer pays it and operates extensively in the market, or he

does not and avoids it altogether. At the same time, I find that the only bond attribute with

substantial predictive power for the concentration level in its trade is its amount outstanding.

Taking the amount outstanding as a proxy for the market size can also be interpreted as the

result of an entry cost mechanism, with larger markets allowing more incumbents to cover the

cost of entry from their operations.

I suggest interpreting the entry cost as the cost of acquiring information about the traded security.

Differently put, dealers that dominate a market for a bond are those that are better informed

about the bond’s value. This interpretation draws on a large body of literature documenting

that OTC markets are pervaded with adverse selection and that often dealers, rather than

customers, are the less informed party in the trade (see, for instance, Easley and O’hara (1987)

or Chalamandaris and Vlachogiannakis (2020)). Furthermore, this literature demonstrates that

dealers protect themselves by trading only for sizeable spreads that cover their expected losses.

Thus, informed dealers are expected to bid more aggressively and win a significant market share.

I show that the data is consistent with two implications of this theory. One implication of this

claim is that dealers are likely to specialize in bonds that resemble each other, as learning about

one of them lowers the cost of becoming informed about the other. I find that this is indeed the

case with dealers specializing in bonds issued by the same firm and in firms operating in the

same industries. A second implication is that dealers who dominate the market for a specific

bond are expected to charge lower spreads. Using regression analysis, I demonstrate that this is

indeed the case.

I embed the theory suggested here into a structural model and calibrate it to the behavior
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of spreads and volume before and during the COVID-19 crisis in the US Corporate Bonds

Market in 2019. The calibration has a double purpose. First, it assesses whether the mechanism

suggested here can account for the magnitude of the differences in the response of spreads and

volume to systemic distress across markets for bonds with varying competition levels. Second, it

allows the use of counterfactuals to disentangle the role of rising uncertainty, dealers’ capacity

constraints, and changes in the demand for liquidity in generating the deterioration in trading

conditions during the COVID-19 crisis.

The model depicts customers who sell securities to dealers. It assumes that such customers can

always find a dealer to trade with. However, most (if not most) dealers are uninformed about

the asset’s true value. Such dealers will require buying the bond at a discount to compensate

for their exposure to adverse selection. As a result, informed players will have an advantage and

face competition mostly between themselves. Indeed, the model implies the same pattern in the

data, with dominant (informed) dealers charging lower spreads and facilitating most of the trade

volume. Following Varian (1980)’s seminal model of sales, I model the competition between

informed dealers as an auction with N informed dealers, such that with some probability π each

of them may fail to submit a bid. I interpret π as stemming from search frictions and dealers’

capacity constraints.

Following Camargo and Lester (2014), I explicitly incorporate asymmetric information into this

framework. Thus, there is some probability that a bond is a “lemon”. Customers, who hold

the security, and informed dealers specializing in trading it, can distinguish a lemon from a

“good” asset. Uninformed dealers, on the other hand, cannot. Thus, they are exposed to adverse

selection and charge higher spreads to ensure that they are compensated for it. Since customers

can always find an uninformed dealer, the value of that spread determines the outside option of

a customer who trades with an informed dealer.

The theoretical analysis of the model reveals that the severity of adverse selection can steer

the market into one of two distinct states. In the first state, intense adverse selection forces

uninformed players to retreat from the market, opting to bid exclusively for less desirable assets,

or ’‘lemons”. In a market devoid of uninformed dealers, informed dealers may benefit from

submitting low bids that attract only customers desperate for liquidity. This results in a strong

transmission of shocks to liquidity demand to spreads and volume. Alongside, we witness a

6



substantial disparity in spreads and volume between markets with varying concentration levels

(or, number of informed dealers). In essence, without uninformed dealers, the competition among

the informed becomes a more significant determinant of market outcomes. This heightened

competition among informed dealers also becomes apparent in the considerable impact of these

dealers’ capacity constraints on spreads and volume.

In contrast, the second state occurs when adverse selection is less intense, allowing uninformed

dealers to compete for orders involving both high-quality assets and ’lemons’. The competition

they instigate significantly curtails the capacity of informed players to capitalize on customers’

distress by charging higher spreads. Consequently, an uptick in liquidity demand and a tightening

of dealers’ capacity constraints mildly affect spreads and volume. Furthermore, the differences

in spreads between markets with diverse quantities of informed dealers remain minimal.

I calibrate the model to the behavior of spreads and volume of a sample of bonds rated “‘BBB-”

before and during the COVID-19 crisis. I assume that the crisis results in 3 external changes to

the model’s parameters: higher demand for liquidity, manifested in lower reservation value of

some of the customers, exhaustion of dealers’ capacity, reflected in a higher likelihood of failing

to submit a bid, and adverse changes in asset composition, embedded in a greater share of

“lemons” in the markets and a wider gap between the value between lemons and regular assets.

My focus is on two groups of moments. The first are moments utilized for evaluating changes in

asset composition. I estimate the probability of a bond being a ’lemon’, meaning less valuable

than suggested by its observable traits, using the likelihood of the bond being downgraded

contingent on being re-rated. I assess the value of a lemon using the expected inter-dealer price

of a bond rated “BBB-” following a downgraded. I find that the COVID-19 crisis period was

marked by a dramatic depreciation in the value of a ’lemon’ relative to a high-quality bond.

Incorporating the exact values into the model reveals a level of adverse selection that would

compel uninformed dealers to abstain from trading high-quality assets. This, consequently,

enables the shock to customers’ liquidity demand to have a sizeable impact on spreads.

The second category of moments serves as targets to calibrate parameters characterizing cus-

tomers’ demand for liquidity and dealers’ capacity constraints. The model successfully hits these

targets while implying reasonable parameter values. This demonstrates that the mechanism
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inherent in the model can account for substantial disparities in the response of spreads to systemic

distress across markets with varying levels of competition. Moreover, the model replicates the

differences in the volume response to the crisis across those markets almost perfectly, although

these differences were not used as targets in the calibration. In other words, the concurrent

behavior of spreads and volume in the data behave as if they operate under a competitive setting

akin to the one represented in the model.

I use the calibrated parameters to study counterfactuals. I show that absent the changes in

asset composition that exacerbated the severity of adverse selection in the COVID-19 crisis, we

would have witnessed a much milder deterioration of trading conditions, especially in markets

with higher concentration levels. In contrast, even if there had been no tightening of dealers’

capacity constraints, the rise of adverse selection and the heightened demand for liquidity would

result in higher spreads and lower volumes.

The paper’s main contribution is in setting forth a novel mechanism underlying the decline in

liquidity in OTC markets during times of crisis and providing empirical evidence to support it.

In contrast to the literature highlighting that systemic distress hinders trade by imposing higher

intermediation costs, the paper emphasizes how a crisis exacerbates the severity of monopolistic

inefficiencies. It induces dealers to charge higher mark-ups and provide less intermediation

services. In that sense, the dealer sector may “clogs” trade even when dealers do not face

substantial constraints on their ability to load bonds into their portfolio.

This mechanism implies a novel link between an OTC market structure and financial fragility. I

argue that during systemic distress, potential buyers exploit their market power more aggressively

to buy securities at substantial discounts from sellers in dire need of liquidity. An OTC trading

protocol exacerbates the losses from such a mechanism since it gives buyers more market power.

This happens because each dealer serves multiple potential buyers. In other words, trade

intermediation contracts the size of the buy side of the market. To put this argument into more

concrete terms, if there are n = 20 potential buyers for a security, and each dealer serves m = 10

of them, a customer who wishes to sell it in an OTC setting is facing a market of 2 potential

trade counter-parties (the dealers) rather than 20.

Secondly, to the best of my knowledge, this is the first paper to document a correlation between
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the concentration in the trade of a bond and the rise in spreads in trades of that bond during a

crisis. I also show that this correlation holds when we compare bonds with similar attributes

and control for potential confounders. Furthermore, the differences in the response of spreads to

systemic distress across markets with varying levels are sizeable. If one believes them to imply

a causal connection, they suggest that concentration substantially contributes to the overall

deterioration of trading conditions in OTC markets in a crisis.

A third contribution of the paper is to document new empirical facts that highlight the segmented

nature of OTC markets. It shows that a few dealers typically dominate the market for each

bond and that this segmented structure seems to matter for market performance during a crisis.

Hence, it indicates that using aggregate measures might often be misleading. Instead, analyzing

the market should allow for substantial variation in the trade of different bonds (or bond classes).

The paper also characterizes patterns in dealers’ behavior that underlie this segmentation. It

shows that dealers are highly specialized and that the activity of a typical dealer consists mainly

of trading very heavily on a small subset of bonds in which it specializes. This finding sheds

new light on what dealers do that may contribute to various agendas in OTC markets research.

The paper also sheds new light on the role of asset composition in shaping OTC market dynamics,

specifically in its role in allowing the transmission of shocks to customers’ liquidity to market

spreads.

Literature Review

The paper is a part of the literature that addresses the question:“Why are OTC markets

susceptible to failure during a crisis?”. The literature has pointed out two causes that may

underlie it. The first is opacity. Assets traded in OTC markets are characterized by high levels

of heterogeneity and complexity. Also, the decentralized nature of the trade makes it harder

to learn from actions taken by others (for instance, quotes are not published). The opacity

generates adverse selection. An economic downturn exacerbates it by increasing the likelihood

of defaults and imposing a more significant penalty for purchasing a risky asset. Hence, trade is

diminished through an Akerlof (1978) lemon market mechanism. Papers that discuss such a

mechanism include, for instance, Guerrieri and Shimer (2014), Camargo and Lester (2014), and

9



Zou (2019)).

The second cause discussed in the literature limits on dealers’ capacity. Trade in OTC markets

is facilitated through dealers. A crisis weakens dealers’ balance sheets. As a result, they are

less able to bear the risk involved in purchasing securities as a part of their market-making

activity. They may also face a shortage of capital. The increase in dealers’ costs will prevent

them from meeting the heightened liquidity needs that emerge in systemic distress. Much of the

literature that discusses limits on dealer capacity evolved in the context of the debate about

the post-2008 regulation that placed new restrictions on bank-affiliated dealers. Papers such as

Dick-Nielsen and Rossi (2019) or Bao et al. (2018) compare the response of the market to street

events (i.e., index exclusion or downgrades) before and after the regulation kicked in. They

show that following the regulations spreads increase faster in response to heightened demand for

liquidity. In addition, the effect is more pronounced with bank-affiliated dealers, that is, those

affected by the regulation.

The paper contributes to this literature by suggesting a third cause: monopolistic inefficiency.

This is the first paper to tell that such a mechanism plays a crucial role in generating “market

freeze” dynamics. By that, it highlights that competition (or its absence) in OTC markets is

critical for understanding their stability. In this context, the paper

The paper is strongly related to the rich and fertile literature that applied search models to the

study of OTC markets that originates in the canonical papers of Duffie et al. (2005) and Lagos

and Rocheteau (2009). It shares with it the view that spreads in OTC markets embed markups

charged by dealers. However, it suggests a different framework of thinking about the origin

of the market power that enables markups to emerge. The search literature contends that a

dealer’s power over customers originates from search frictions that make it hard for the customer

to find other dealers to trade with. Note that, at face value, this story does not appear very

compelling. In contrast to finding a job (another prime application of search theory) that may

require contacting hundreds or even thousands of firms to reach most openings, finding a dealer

willing to buy should be more straightforward. More than 90% of the trade in the US Corporate

Bonds Market is accounted for by the top 20 dealers. These are large and well-known players,

and merely finding them requires no more than a phone call or an email 2. In contrast, the

2Indeed, the Duffie et al. (2005) seminal paper states that the search frictions are an abstraction that is
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paper suggests that the obstacle in OTC markets is that few dealers are willing to purchase each

security. In other words, each customer faces only very few incumbents. In such circumstances,

markups can arise without substantial search frictions (e.g., Cournot competition).

The paper also belongs to the literature that studies the impact of dealer market power on

spreads. One segment of this literature consists of empirical papers attempting to disentangle

dealer spreads into cost and markup components. For instance, Green et al. (2007) applies a

production frontier setting to argue that the markup of a transaction is the difference between the

spread taken by the dealer and the smallest spread charged for a similar transaction that occurred

at about the same time. The novelty of this paper is inferring market power from volume. Since

I gauge market power separately from spreads, I can better learn how one affects the other.

Specifically, I present evidence of a clear and sizeable correlation between concentration in OTC

markets and the response of bids to systemic distress. In this context, the documentation of the

concentration in OTC markets has a solid connection to the documentation of a similar pattern

among market-makers in stock markets by ?. Like Schultz, I argue that the concentration results

from informed players dominating the market-making activity.

The paper is a part of the literature on information acquisition. It applies Van Nieuwerburgh

and Veldkamp (2010) and Veldkamp (2014) theory about under-diversification to explain

concentration in OTC. According to the theory, costly information acquisition implies payoffs to

specialization. An investor may prefer to hold a narrow portfolio since doing so allows her to

become highly informed about her holdings. The seminal paper by Kacperczyk et al. (2005)

demonstrates such under-diversification among mutual funds, and documents that funds that

specialized in specific industries exhibit better performance. In an OTC setting, a recent paper

by Chaderina and Glode (2022) demonstrates how expertise contributes to a dealer’s return by

increasing its order flow. That, in turn, allows the dealer to extract higher rents from encounters

with less sophisticated investors.

The paper is structured as follows: Chapter 2 describes the data. Chapter 3 explores what

underlies concentration in OTC markets and suggests that it originates from information

acquisition. Then, Chapter 4 presents the model and elicits theoretical results connecting

underpinned by a more complex mechanism, such as a limitation on clearance or time required for dealers to
acquire information about the security traded
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uncertainty with the impact of market power. Chapter 5 calibrates the model. Finally, Chapter

6 concludes and discusses policy implications.

2 Empirical Analysis

The empirical analysis consists of two parts. The first part characterizes concentration in OTC

markets. It shows that while the market as a whole is quite competitive, the market for each

bond is dominated by a few dealers. It also explores the causes that underlie this concentration.

Given the findings, I suggest a theory of market power due to information acquisition. The

second part studies the correlation between bond-level concentration and response to systemic

distress. Focusing on the Covid-19 crisis, the paper documents that bonds traded by fewer

dealers (higher HHI) exhibit a stronger spread increase and a more significant decline in volume

during the crisis. Similar results stand for the 2007-2009 crisis.

2.1 Data

I use Regulatory TRACE data on the US Corporate Bonds Market, 2006 - 2020. This data

is collected by FINRA, a self-regulatory authority that supervises broker-dealers. It provides

detailed information for each secondary market for US corporate bonds trade. The data includes

the CUSIP identifier of the bond, the time of the trade, the price, the volume traded, and more.

The Regulatory version includes the identities of all dealers participating in the transaction.

The identities uncover the share of each dealer in trading each bond.

I apply standard cleaning procedures common in the literature. First, I use ?’s filter to account

for corrections and cancellations of prior reports. Regulatory TRACE includes the report of

both parties in a dealer-to-dealer trade. Those trades were removed. The Choi-Hu filter is

used to remove transactions with non-member affiliates. The purpose of doing so is to ignore

“bookkeeping” transactions a dealer makes with subordinate entities or other institutions owned

by the same holding company. While TRACE began in 2001, during 2001 - 2005, many trades

were exempt from reporting. Hence, only use data collected after January 2006 is used.
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Data on bond attributes attained from Mergent Fixed-Income Securities Database (FISD) is

joined with the TRACE data. The FISD data includes a rich specification of the terms of the

bond. These include the bond’s rating and its amount outstanding.

The sample used starts with all secondary market trades in corporate bonds executed from Jan.

1, 2006, to Dec. 31, 2020. Trades in the primary market and trade in a bond in the first 90 days

after its issuance (”on the run”) are removed, as well as trades in bonds with less than one year

left to maturity. To be included in the sample, it is required that a bond is issued in US dollars

by US firms that belong to one of the following three broad FISD industry groups: industrial,

financial, and utility. Also, bonds with unique attributes that impact their pricing are filtered

out, as is common in the literature. These include perpetual bonds, Yankee, sinking fund, and

asset-backed bonds. Last, bonds that cannot be matched to Mergent FISD are removed. After

the cleaning procedure, the data sample consists of 121 million observations.

Trades are divided into two types. The first is agency trades. In these trades, a dealer buys

security while knowing upfront who he will sell it to later. The second type is principal trades, in

which a dealer buys and holds the bond. One can think about the difference between these two

types relating to who has the bond until a buyer is found. The bond is left with the customer

in agency trades, while the dealer holds it in principal trades. This paper focuses on principal

transactions for two reasons. First, these trades are critical for providing customers with an

immediate injection of liquidity. Second, about three-quarters of the volume in the market is

traded in a principal capacity.

2.2 Anatomy of concentration

A bond-level Herfindahl â Hirschman Index (HHI) is constructed for the analysis. The HHI index

is one of the most common tools used in economic literature to measure market concentration.

It provides a single number that summarizes to which extent is the majority of activity in the

market dominated by a few players (in this context, dealers).

Let Vb,t be the total volume of bond b traded in year t. Let vd,b,t be the volume of the bonds
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traded by dealer d in year y. Define the dealer share as

sd,b,t =
vd,b,t
Vb,t

.

Based, on it, the Herfindahl-Hirschman Index (HHI) at the bond level is defined as

HHIb,t =
n∑

d=1

s2d,b,t. (1)

If trade is conducted by many players, each having a small share, the measure approximates

zero. If the trade is dominated by a single player, the HHI is one. If there are n players, each

owning a share of 1
n
of the market, HHI is 1

n
.

An HH-index to segments of the market is also generated. It is computed by applying Equation

1 to a subset of trades. For instance, the bond-level HH-index for principal trades between

dealer and customer is computed by applying 1 to a subset of our sample that consists solely of

trades between dealers and customers in which the dealer acts in a principal capacity.

Define CRib,t, i ∈ {1, 2, 3, 4} as the share of trade in a bond b in year t that is facilitated by the

i dealers who trade most extensively at the bond. Again, analogous measures for issuers are

created and applied to different sub-segments of the market.

The concentration of bonds and the market structure that underlies it are explored in this

section. One of the main goals is to understand the reason for the concentration in the data.

The analysis in this section focuses on trades in the year 2019 conducted by the largest 50

dealers in the market. That dealers account for constitute more than 99.5% of all trades.

2.2.1 Concentration at the Bond Level

Figure 1 represents the distribution of CR3 - the share of trade in a market for a bond that is

accounted for by the three dealers who trade it most intensively (i.e: have the largest market

share in terms of volume).

The solid line boxplot represents the bond-level CR3 that is computed based on all trades in the

market. For more than 50% of the bond, more than 55% of the volume is traded solely by three
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Concentration in the US Corporate Bonds Market

Figure 1: Distribution in the share of trade of the three leading dealers for
each bond, 2006-2020.
Note: The data relied upon to generate this figure was TRACE Data provided by FINRA's TRACE System.

dealers. For the sake of comparison, CR3 of the market as a whole appears on the plot as an X

mark. The market-wide HHI is 27% - less than half of the bond-level median CR3. Also, on

average, each of the three largest dealers in the market accounts for 9% of the entire volume.

That does not seem, at least on the surface, to be a concentrated market.

Looking deeper into the data, it is possible to see that some dealers only operate only in the

inter-dealer sector. These are usually alternative trading systems that dealers utilize for small

trades. The presence of such dealers does not provide alternatives to a customer who is trying

to sell a bond. The dotted plot is obtained by excluding those dealers, indicating a higher level

of CR3. Further, some dealers only trade with customers in an agency capacity. They do not

provide immediacy, which could be crucial in times of distress. Thus, to get an even better

gauge of the actual options that a customer is facing when trying to sell a bond immediately

(without waiting for the dealer to find a buyer), the CR3 for trades in which a dealer buys a

customer from a bond in a principal capacity is represented by the dashed boxplot. Its implied

concentration is even greater, with the median bond having more than 70% of the total trade

accounted for by three prominent players.

Figure 2 exhibits an analogous plot for HHI. The median HHI is about 0.38. To get an intuitive

understanding of it, imagine a market that only has three traders. The first trader is responsible

for 40% of all volume, the second one also for 40%, and the third one for 20%. This highly
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Concentration in the US Corporate Bonds Market (measured by HHI)

Figure 2: Distribution of the bond-level HHI, 2006-2020.
Note: The data relied upon to generate this figure was TRACE Data provided by FINRA’s TRACE System.

concentrated fictitious market has an HHI of 0.36, which is a lower level than the one found for

the median bond market.

Further, it is possible to see that concentrated markets account for a sizeable part of total trade

in corporate bonds. Figure 3 plots the cumulative volume (y-axis) that was bought by the dealer

in principal capacity when trading bonds with an HH-index of h of below it (x-axis, HHI)).

About 50% of the volume sold by customers (bought by dealers) in the year 2019 was generated

in trades of bonds with an HH-index of 0.4 or more.

2.2.2 The Causes Underlying Concentration

This section explores patterns in the data that hint at the causes of concentration in the bonds

market. It begins with the low HHI of the entire bond market, which implies that the issue at

stake is not barriers to entry in the dealer sector. Indeed, there are hundreds of dealers, with

neither of them holding a share of the market large enough to grant any sizeable market power.

Concentration emerges only when the examination happens at the level of each separate bond.

This implies market segmentation. To get a deeper understanding of what underlies it, we take
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Market Volume x Market Concentration

Figure 3: Markets with high concentration account for a substantial share
of total market volume.
Note: The data relied upon to generate this figure was TRACE Data provided by FINRA’s TRACE System.

a deeper look into the trade activity of each dealer. Specifically, the goal is to see if dealers

are specialized, that is, if they trade heavily on some bonds while being less active in others.

For that, one can consider a dealer d as specializing in trading of bond b if its share in volume

traded of that bond is at least three times greater than his share in the total volume of trade

in the market. Figure 4 plots the cumulative share of dealers (y-axis) for which at x% of their

total volume or less was generated in trading bonds they specialize in.

For about 70% of dealers, trades in bonds they specialize in account for at least 50% of the

trade. This strongly contrasts with what would be expected based on a standard diversification

argument. To mitigate risk, dealers should prefer to hold a broad portfolio that reduces their

exposure to the performance of any specific security or issuer. Nonetheless, the exact opposite

occurs. The information story suggested below implies this happens for the same reasons

explained in Veldkamp (2014). It originates from a trade-off between having a broad and

diversified portfolio and being well-informed about the assets that constitute it.
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Share of Dealers x Share of Volume

Figure 4: A dealer trades mostly in bonds in which it specializes.
Note: The data relied upon to generate this figure was TRACE Data provided by FINRA’s TRACE System.

To get a closer glance at dealer specialization, define

δ̂b,d,t =
sb,d,t − S̄d,t

S̄d,t

as the deviation of dealer d share in bond b from its share in the total volume of trade. The

latter would have been the expected share if the dealer randomly traded bonds. Its distribution

is plotted in Figure 5.

As shown above, the majority of trade of dealers happens in the small subset of bonds (less than

15%) in which they specialize. For other bonds, it is possible to define two groups. One group

consists of bonds that the dealer trades sporadically, (δ̂b,d,t ∈ (0.99, 0]). The other are bonds

that the dealer never trades (δ̂b,d,t = −1). From the graph, we see that the latter includes about

45% of all bonds. Indeed, no single dealer ever trades more than 65% of bonds in this market.

Further, this result holds if the sample is expanded to start in 2006 and finish in 2020. That is

the upper bound on the share of bonds that the dealer trades does not seem to be the result of

randomly trading bonds it does not specialize in. Rather, it seems that there are some bonds
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Histogram of Dealer Share of Bond as pct. of its Share in Total Volume, 2019

Figure 5: A dealer specializes in a bond, trades it sporadically, or avoids
trading it altogether.
Note: The data relied upon to generate this figure was TRACE Data provided by FINRA’s TRACE System.

that dealers intentionally avoid. This pattern has reminiscent of an entry cost, that is, either

the dealer pays it and trades in a market, or he does not and does not operate in it at all.

The entry cost flavor of the results gains further support from studying attributes that characterize

bonds with high levels of concentration. Table 1 shows the results of the regression model

HHIb,t = Xb,tβ + ϵ

, where Xb,t is a set of bond attributes in year t. These include the mean rating given to the

bond according to Mergent FISD, the coupon rate, year to maturity, the age of the bond (years

since it was offered), and a categorical variable for the amount outstanding. Indicator variables

for a bond that pays a coupon in a non-standard frequency, a bond that falls within the ambit

of rule 144a, and a callable bond are also included. Last, industry group fixed effects and issuer

fixed effects in some of the models are considered.

The best predictor of a bond’s concentration level is the amount outstanding. Adding it to a

regression that does not include controls for the bond’s issuer props up the R-squared from

0.08 to 0.21. A low amount outstanding is correlated with a higher level of concentration.

The amount outstanding can be interpreted as a proxy for the size of the market. Hence, the

regression implies that larger markets have more participants. This is exactly what would be

expected in an entry cost setting: the larger the market, the greater the number of players that

can enter and share it before doing so no longer justifies paying the entry cost.
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Dependent Variable: bond-level HHI
Model: (1) (2) (3) (4)

Variables
rating -0.0008 -0.0045∗∗∗ 0.0108∗∗ 0.0082∗∗

(0.0021) (0.0007) (0.0026) (0.0016)
coupon rate 0.0051 0.0080∗∗ 0.0077∗∗ 0.0079∗∗∗

(0.0038) (0.0018) (0.0015) (0.0010)
non-standard coupon frequency 0.0650∗∗∗ -0.0074 -0.0447∗ -0.0423∗

(0.0070) (0.0257) (0.0179) (0.0150)
rule 144a 0.0459∗∗∗ 0.0464∗∗∗ 0.0608∗∗∗ 0.0353∗∗∗

(0.0063) (0.0052) (0.0056) (0.0043)
callable 0.0565∗∗∗ -0.0356 -0.0205 -0.0213

(0.0050) (0.0220) (0.0364) (0.0333)
time to maturity 0.0007 0.0005∗ 0.0003 0.0003

(0.0003) (0.0002) (0.0003) (0.0003)
time since offering 0.0044∗∗∗ 0.0016 0.0045∗∗ 0.0029∗∗

(0.0006) (0.0010) (0.0009) (0.0008)
issue size: 0-100m 0.1501∗∗ 0.1095∗∗∗

(0.0271) (0.0143)
issue size: 100m-500m 0.1007∗∗∗ 0.0714∗∗∗

(0.0086) (0.0047)
issue size: 500m-1t 0.0379∗∗∗ 0.0275∗∗∗

(0.0025) (0.0044)

Fixed-effects
industry Yes Yes Yes Yes
issuer Yes Yes

Fit statistics
Observations 460,279 460,279 460,279 460,279
R2 0.08608 0.21349 0.54168 0.56487
Within R2 0.05716 0.18861 0.04507 0.09338

Clustered (industry) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Table 1: Regression - attributes of bonds traded in concentrated markets.
Note: The data relied upon to generate this figure was TRACE Data provided by FINRA’s TRACE System.

Another salient thing about the regression above is the impact of controlling for the bond issuer.

It dramatically increases the model’s predictive power. That suggests that dealers specialize

in bonds issued by the same entity. To further explore this possibility, we run the following

regression:

Sd,b,t = β0 + βSd,i,t,−b + ϵ,
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where Sd,b,t is the share of dealer d in the total volume of bond b in year t, and Sd,i,t,−b is the

share of d in the volume of trade in all securities issued by dealer d besides security b. The

results appear in Table 2:

Dependent Variable: dealer share in trading the bond

Variables
(Intercept) 0.0123∗∗∗

(9.34× 10−5)
dealer share issuer (but bond) 0.9780∗∗∗

(0.0019)

Fit statistics
Observations 584,798
R2 0.30679
Adjusted R2 0.30678

IID standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Table 2: Trades in the year 2019
Note: The data relied upon to generate this figure was TRACE Data provided by FINRA’s TRACE System.

A 1 bps increase in the share of dealer d in all securities of issuer i besides bond b presages a

0.98 increase in the share of that dealer in trading bond b. That is, if one would like to predict

the percentage of trades of a dealer in a bond based on its share in other bonds issued by the

same firm, the best guess would be to say that they are about the same. Also, the prediction

explains a substantial part of the variance, as implied by the relatively higher R-squared of 0.3.

These results imply that dealers specialize in trading specific issuers rather than bonds. This

pattern is consistent with what would be expected if market segmentation originated because

of information asymmetries. Knowledge of the issuer allows a dealer to assess its default risk.

That, in turn, helps the dealer to price its bonds more appropriately.

If this is true, dealers will specialize in firms that resemble each other. The resemblance means

that information that is acquired to assess the resilience of one can help evaluate the resilience

of the other. To test this, we run the following regression:

Sd,i,t = Sd,j,−i + ϵ,
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Where Sd,i,t is the share of dealer d in the volume of all bonds issued b in year t, and Sd,j,t,−i is

the share of d in the volume of trade in all securities of all issuers from sector j besides i in year

t. Issuers are assigned to sectors according to their 5-digits NAICS code from Mergent-FISD.

The data includes issuers with 825 different NAICS codes. The regression results appear in

Table 3.

Dependent Variable: dealer share issuer

Variables
(Intercept) 0.0134∗∗∗

(5.4× 10−5)
dealer share industry (but issuer) 26.27∗∗∗

(0.0616)

Fit statistics
Observations 670,459
R2 0.21346
Adjusted R2 0.21346

IID standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Table 3: Trades in the year 2019.
Note: The data relied upon to generate this figure was TRACE Data provided by FINRA’s TRACE System.

Again, there is a statistically significant positive correlation between the dealer share in trading

firms in a particular industry and the likelihood that it trades the bonds of an issuer belonging

to this industry. There is also a relatively high R-squared. Knowing only the dealer’s share

in trading, other issuers in the industry explain much of the variance in the data. Another

interesting evidence of specialization comes from comparing each dealer’s trade share in the

trade in all issuers belonging to a specific industry (by NAICS code), which is 1.79e−04, to the

median of the dealer share in all issuers in general, equaling 1.29234e− 05.. The former is more

than ten times greater than the latter. That is, the distribution of the share of each dealer

in each industry has a fat right tail: some dealers trade much more heavily on bonds from a

specific sector than all others.

These patterns reverberate a state in which dealers specialize in bonds that they are more

familiar with. Such a state need not be surprising. A dealer that overpays for a bond is likely to

end up incurring losses when selling it for a lower price at a later date. Considering the small
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profit margin of dealer activity (most estimates of spreads in regular times are 15 - 30 bps),

even a tiny error can result in losses. In this context, papers like Easley and O’hara (1987) and

Chalamandaris and Vlachogiannakis (2020) show that OTC markets are pervaded with issues

of asymmetric information and that it often happens that the dealer is less informed than the

customer. Further, they demonstrate that dealers compensate for their expected losses from

adverse selection by charging higher spreads. Thus, if some dealers are better informed about a

specific security, we would expect that they would be able to offer better prices. That, in turn,

would allow them to win a larger share of the market.

An immediate implication of such logic is that prominent dealers will charge lower spreads. To

test it, I run a regression model of spreads on the dealer’s prominence level in the market for

the bond that was traded:

spread = βdealer prominencet−1 + bond ∗ trade size ∗ date + dealer

Where dealer prominence is a categorical variable that is assigned with the value ”Non-active”

if the dealer traded the bond less than five times in principal capacity, ”Active”, if the dealer

traded it more than five times in principal capacity but accounts for less than 10% of total trade

volume, and ”Prominent” if the dealer traded the bond at least five times and accounts for more

than 10% of total trade in the bond. I use the dealer prominence from the previous year to

avoid bias due to reverse causality. The trade size variable categorizes trades into volume bins

of > $100, 000, $100, 000 − $500, 000, $500, 000 − $1, 000, 000, $1, 000, 000 − $5, 000, 000, and

$ > 5, 000, 000. The regression is applied to all principal trades occurring in the years 2006-2020.

The regression compares trades of the same bond (identified by cusip), at about the same volume,

conducted on the same day, that were made by dealers with varying levels of prominence in

the market. It also controls for dealer fixed effects to avoid potential selection bias. Its results

appear in table 4

What we can see is that dealer prominence is indeed associated with lower spreads. The

differences are sizeable. For instance, we see that when a dealer who is prominent in the market

for a specific bond purchases it from a customer, he charges a spread that is 12 bps lower than

that charged by a non-active dealer. In other words, it pays for it more. As spreads typically
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trade type C2D D2C
Model: (1) (2) (3) (4)

Active -0.2227 (0.5272) -1.178∗∗ (0.5568) 2.218∗∗∗ (0.3878) -0.4710 (0.3933)
Prominent -11.58∗∗∗ (0.5805) -3.841∗∗∗ (0.6147) -8.617∗∗∗ (0.4351) -2.611∗∗∗ (0.4511)

bond - trade size - date Yes Yes Yes Yes
dealer Yes Yes

Observations 10,702,378 10,702,378 12,097,754 12,097,754

Table 4: Dealer prominence and spreads; All principal trades in the years
2006 - 2020
Note: The data relied upon to generate this figure was TRACE Data provided by FINRA's TRACE System.

oscillate in a band of 15-30 bps, this is a remarkably substantial difference. When we add

controls for dealer fixed effect, the difference is diminished to 3.84 bps. This might indicate a

division of roles in the market - some dealers specialize in specific bonds and offer better prices

for them, while other dealers are willing to trade anything but are compensated by a higher

markup. Yet, also when taking those into account, the differences in pricing are quite large.

We see a similar pattern when a dealer sells to a customer and when comparing active and

non-active dealers (although there the results are more ambiguous).
The information acquisition logic and the entry-cost patterns seen above imply an interesting

depiction of OTC markets. According to it, dealers can pay the cost of acquiring information

about the value of the security. The information protects them from adverse selection. Hence,

they can compete more aggressively and win a larger market share. This depiction gains further

support from a recent paper by Brancaccio et al. (2017). The paper shows that the complexity

of a municipal bond presages a more significant market share and higher profits for the bond

underwriter. They argue that this is because complexity increases the cost other incumbents

need to pay to learn about the value of the security. Further, using close elections as an IV, they

show that when underwriters are subject to more lax regulations (republicans win), they tend

to issue more complex municipal bonds, allegedly to increase the cost of entering the market for

other incumbents.

Lastly, given that dealers specialize by issuer, one might think it is proper to consider the market

segmented across issuers rather than bonds. To see if this is the case, Figure 6 focuses on dealers

accounting for more than 10% of the trade in an issuer’s bonds. It plots the deviation of their

share of trade in each bond from their share of trade in all the issuers’ securities.

When a dealer trades an issuer’s securities, it trades many of them quite heavily. However, it
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Histogram of dealers share of a bond vs. share of all issuers bonds, 2019

Figure 6: Trading an issuer does not mean trading all its bonds.
Note: The data relied upon to generate this figure was provided by FINRA’s TRACE System.

also refrains from trading others altogether. That is, while they focus on securities of a subset

of issuers, within each issuer, they focus on a subset of bonds. For instance, that could result

from the type of clients the dealer is working with. For example, bonds with one year left to

maturity are traded by money-market funds. It makes sense that only dealers connected to such

players will intermediate such bonds, even if the dealer is familiar with the issuer and can assess

the likelihood of default. Also, bonds can be highly heterogeneous and complex assets. Thus,

familiarity with the issuer is insufficient to determine its security value. Given this context,

Table 1 shows that bonds with a low amount outstanding will typically be traded by fewer

dealers vis-a-vis other bonds issued by the same issuer. Again, the amount outstanding can

be considered a proxy for market size, and the larger the market for a bond, the greater the

number of dealers that will pay the cost of assessing its actual value. Because of this pattern,

markets will be regarded as segmented at the bond level throughout this paper.
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2.3 Concentration and Response to Systemic Distress

2.3.1 Markups During Regular and Crisis Times

Before I proceed with the analysis, I would like to provide some additional evidence for a claim

that appeared already in the introduction - that is, that in times of crisis, dealers are charging

higher markups. I made a claim based on literature that uses measures of spreads based on the

difference between the price of a bond in interdealer trades and its price in transactions between

customers and dealers. This literature documents a substantial rise in these measures during a

crisis (see, for instance, O’Hara and Zhou (2021)). Since, in both cases, the purchasing dealer

assigns the same value to the security (considering his holding cost, ability to bear risk, etc.),

these measures probably capture a markup component. I will elaborate on the measures from

this literature and apply them myself in section 2.3.2. However, before doing so, I would like to

present another piece of evidence that demonstrates that dealers buy from (sell to) customers at

cheaper (higher) prices compared to those in which they buy from (sell to) other dealers. The

purpose of doing so is to ensure that the result does not originate from attributes of the spread

measures used in the literature and that they also hold when considering the quantity traded

impact on the price.

For that purpose, I run a regression that measures the difference in price between a transaction

made by two dealers and a transaction of the same bond traded on the same day at about the

same quantity between a dealer and a customer. Note that the simplicity comes with a price -

the regression will only include bonds traded by two dealers and a dealer and a customer at

about the same volume on a given day. Hence, it selects liquid bonds that typically have lower

spreads. Therefore, I advise the reader to focus on the relative sizes of the coefficients appearing

in the regression rather than their absolute size.

The regression model is:

price = Bond×Date× trade size+D2D +D2D × Crisis (2)

Where the dependent variable, price, is the price at which a transaction occurred. On the right-

hand side, I control for an interaction term between the bond, the date of trade, and a trade size
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categorical variable that divides the trade sizes into the ranges: [100k, 500k), [500k, 1m), [1m, 2m), [2m, 5m), 5m <.

The D2D is a dummy variable that takes the value one if both sides of the trade are dealers

(zero otherwise), and the variable D2D × Crisis takes the value one if both sides of the trade

are dealers and the trade occurred during a great recession or the COVID-19 crisis.

I run the regression on a sample of the data that consists of the Great Recession (July 2007 -

May 2009) and the period from January 2006 to its beginning, and the COVID-19 crisis (March

5th - April 10th, 2020). and the period between January 2019 and its eruption. Including the

periods that proceed the crisis is meant to allow a comparison of crisis periods to near times in

which market conditions, absent the distress, are assumed to be similar. I limit my attention to

transactions of wholesale trades (volume of more than $100,000) made in a principal capacity. I

apply the regression to two subsamples of the data. One includes trades in which customers sell

to dealers (C2D) and interdealer trades and is used to compare the price a customer gets paid

when selling a bond to the price that a dealer gets for selling it. Similarly, the other subsample

consists of trades in which customers buy from dealers (D2C) and interdealer trades and is used

to measure the difference between the price a customer pays and the one paid by a dealer.

The regression results appear in 5. It indicates that the difference between the price paid to a

customer and the price paid to a dealer in regular times, captured by the D2D dummy variable,

is indeed positive when comparing C2D and D2D trades, meaning dealers get paid more for

selling the same security on the same day at about the same quantity. The difference of 26

bps is statistically significant. Similarly, when comparing D2C and D2D trades, we find that

dealers pay prices 26 bps lower than those paid by customers. More importantly, looking at

the discount at which buyers sell a security during a crisis (compared to the prices that dealers

get to sell it), captured by the sum D2D +D2D × Crisis, we find that it is 44 bps, or 65%

greater than its size in normal times. About the same relative price, change is also found when

customers buy from dealers during a crisis, where they pay an additional 43 bps compared to

what dealers pay for the same transaction.

In columns (3) and (4) of the table, we see that the result holds also when controlling for a

dealer-date fixed effect. That is, it is not driven by the selection of the type of dealers that

engage in each type of trade in normal and crisis times.
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Dependent Variable: price
Trade Type: C2D D2C C2D D2C
Model: (1) (2) (3) (4)

Variables
D2D 0.2603∗∗∗ -0.2663∗∗∗ 0.2346∗∗∗ -0.1883∗∗∗

(0.0065) (0.0014) (0.0031) (0.0032)
D2D × Crisis 0.1734∗∗∗ -0.1663∗∗∗ 0.1810∗∗∗ -0.1506∗∗∗

(0.0102) (0.0123) (0.0071) (0.0254)

Fixed-effects
Bond×Date× trade size Yes Yes Yes Yes
Dealer ×Date Yes Yes

Fit statistics
Observations 6,981,016 7,966,969 6,981,016 7,966,969
R2 0.98731 0.98698 0.99154 0.99012
Within R2 0.00128 0.00270 0.00132 0.00099

Clustered (cusip id-trd exctn dt-t size) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Table 5: Regression results, equation 2 applied to the Covid-19 crisis and
the period proceeding it.
Note: The data relied upon to generate this table was TRACE Data provided by FINRA’s TRACE System.

The takeaway from this simple regression is that at least a part of the increase in spreads that

dealers charge customers during times of systemic distress is a markup. It is a markup in the

sense that it does not manifest changes in the value that the dealer assigns to holding the

security due to capacity constraints, adverse selection, or any other factor. That does not mean

that it is not related to such factors. For instance, the capacity constraints of some dealers

mean that others are facing weaker competition and can charge higher spreads (and I explore

such connections below). However, it does mean that what we are seeing here is not dealers

rolling on higher costs of facilitating trade to their prices. Rather, we witness dealers exploiting,

if you will, the crisis circumstances to squeeze greater profits from trading with customers. This

pattern, in turn, is intimately related to competition in OTC markets.

2.3.2 HHI and Spreads in Regular and Crisis Times

Typically, OTC markets data shows realized prices, rather than asks and bids. Further, many

bonds are traded quite infrequently. It may take days, weeks, or months between the time we see
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the bond sold and the time we see it was bought. These circumstances make it measure bid-ask

spreads directly from the data. Thus, it is also a challenge to discern the cost of intermediation

and disentangle its changes in the security fundamental value.

Here, a measure of spreads first suggested by O’Hara and Zhou (2021) is used. This measure

uses the percentage difference between the price of a bond in a specific transaction and the price

of the most recent trade of the same bond in the dealer-to-dealer market.

The underlying assumption made when using this measure as a benchmark is that dealers

operate in a more-or-less frictionless market. Hence, the prices of deals between dealers should

be close to the fundamental value of the asset. Also, from a more pragmatic point of view, the

dealer-to-dealer market is quite active. It is easier to find the last time a bond was traded in

that market rather than match a bond buy with the last time it was sold (or vice-versa).

The measure is:

spreadj = ln(
trade pricej

Benchmark pricej
) ∗ trade signj (3)

The benchmark is the price of the most recent dealer-to-dealer principal trade in the bond. For

brevity, I will refer to this trade as the benchmark trade. The trade sign is 1 for a customer

buying from a dealer and (-1) for a customer selling to a dealer. The spread measures the

percentage difference between the price that a customer gets paid (pays) when selling (buying)

a bond versus what a dealer gets paid (pays) when selling (buying) the exact same security.

Typically, dealers will attain favorable prices, that will be manifested in a positive measure. It is

widely held that the differences in pricing originate from the fact that dealers, unlike customers,

are well-immersed in the market and are better able to attain multiple offers for their spreads. In

other words, the measure captures exactly what the paper focuses on a markup that is imposed

on customers by dealers that exercise their monopolistic power. That power, in turn, originates

from customers’ limited ability to find alternative dealers to trade with. In this context, it is also

important to note that the measure is not likely to reflect dealers’ holding costs of the security.

To see that, focus for the time being on cases in which a customer sells to a dealer. In those

cases, the measure is constructed by comparing the price of two trades in which a dealer buys

the same bond: one in which he buys it from a customer, and another one, close in time, in

which he buys it from another dealer. Trivially, as in both trades, the same security is purchased
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its holding costs should be the same.

For the coming analysis, I apply a few additional filters to the data. I limit my attention to risky

principal trades. I do so for two reasons. First, these trades account for more than 75% of trade

volume. Second, as rightly pointed out by Dick-Nielsen and Rossi (2019), the spreads for these

trades indicate the cost of immediacy or the price that a customer pays for attaining liquidity in

a very short time frame. The rise in the cost of getting liquidity in timely manner is a main

factor in the dynamics of a crisis in OTC markets. Also, I ignore retail trades and incorporate

only transactions with a volume of $100,000 or more. I do so since retail trades constitute

the majority of observations but only 10% of total trade volume. Hence, incorporating these

observations may generate results that apply to them and actually have very little impact on

most of the volume traded. To preserve consistency with previous parts of the work, I focus only

on trades conducted by the top 50 dealers, who account for more than 99% of trade volume. I

measure concentration using bond-level HHI generated from trades in which dealers buy from

customers in a risky principal capacity. To the best of my understanding, this measures the

concentration that has an impact according to the theory that underlies this paper, that is,

the concentration that dictates the alternatives that a customer who wishes to sell a bond in

principal capacity is facing. To avoid bias due to reverse causality, I calculate the HH index for

each transaction based on trades in the bond traded in the previous year, t− 1.

Alongside this, I apply a few filters to address potential weaknesses of the spread measure.

Specifically, I ignore trades in which the time that elapsed between the transaction and the

benchmark trade, that is, the last D2D trade at the same bond, is smaller than 15 minutes. Such

cases are likely to be agency trades that were mistakenly categorized as principal. Regarding

them as such creates a downward bias in our measurements, as agency trades are characterized

by lower bid-ask spreads. That is more true for less liquid bonds, as the infrequent trade makes

such a rapid sequence of trades in the bonds highly unlikely. At the same time, I ignore trades

in which the time that has elapsed since the benchmark trade took place is greater than seven

days. I do so to minimize the effect of fundamental changes in the price of the bond over time on

the differences that the data exhibits between customer-to-dealer versus dealer-to-dealer bonds.

Further, as a robustness test, I run the tests of my hypothesis also on a more limited sample of

transactions for which the benchmark trade occurred at the same day as the trade itself. As we
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shall see, the main results persist when doing so. I winsowrize the spreads to diminish the risk of

bias due to outliers. I set the higher bound of the spreads to be the 95% quantile plus 1.5 times

the interquartile range, and the lower bound to the 5th quantile minus 1.5 the interquartile

range.

Here, I present a set of results attained from regression analysis. The analysis does not meet the

gold standard of studying causality in economics. That is, the assignment of the “treatment”

(concentration) is not random. Therefore, I cannot negate the possibility that some third element

that determines bond-level concentration also underlies its responsiveness to systemic distress.

However, the regression analysis allows me to refute well-specified alternative explanations of

the correlation by adding controls. Specifically, I show that the strong correlation between

concentration and the rise in spreads in a crisis persists when we account for the impact of

the bond liquidity, the dealer expected holding period, the dealer identity, the changes in the

composition of bonds traded throughout a crisis, and more. The analysis also allows me to

demonstrate the overall robustness of the result, that further lowers the likelihood of it originating

from a selection bias.

I apply a transaction-level regression model of the form:

Spreadi,d,b,t = α0 + β1 ∗HHIb,t−1 + β2 ∗HHIb,t−1 ∗ I{Crisis}

γ ∗Xb,t + ηd + ξb + νi + trade date+

ηd ∗ trade date + ξb ∗ trade date + νi ∗ trade date+

λb + λb ∗ trade date (4)

In the LHS of the regression, we have the spread of trade i done by dealer d in bond b at

time t. Our main object of interest is β2 - the coefficient on the interaction term between the

concentration level of the bond and the trade being conducted during a crisis. Note that the

regression has a dif-in-dif flavor to it, with the bond HHI measuring the size of the treatment

and the crisis indicator being the post-treatment dummy. The value of β2 determines to which

extent does the treatment, that is, the HHI, presages a change in the outcome, which is the

spread. To diminish bias due to changes in fundamental prices over time, I weigh trade by

the inverse of the distance in time to the D2D trade that determines the benchmark price for
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calculating the spreads.

The regression includes an elaborate set of controls. First, the vector Xb,t is a vector of bond

attributes that include: age, time to maturity, square root of amount outstanding, the issuer

industry, and more (for the full list, see Table 12 in the appendix). Alongside, I include fixed

effects for the dealer’s identity, ξd, the bond rating, ξb, the trade size, νi, and the bond’s

liquidity. I transform the trade size to a categorical variable by dividing it into the following

bins: [$100-$500), [$500k-$1m), [$1m - $5m), and above $5m. I measure liquidity by the number

of days in which the bond was not traded in the previous year - a common measure in the

literature. I use only trades in which dealers trade bonds with customers, to avoid a mechanical

correlation between this measure and the concentration measure, stemming from the fact that

markets with more dealers will have a higher frequency of dealer-to-dealer trades (Below, I

show that my results also hold with an alternative liquidity measure that incorporates these

dealer-to-dealer trades into the regression). I divide the measure into bins that correspond to

five percentile ranges of the liquidity variable.

Further, the regression includes an interaction term of each of the fixed effects with a date

categorical variable. If I would have used an interaction term of each fixed effect with the crisis

indicator, it would have captured the expected change in the spread of each trade given the

attribute represented by the fixed effect. For instance, a dealer-crisis fixed effect would have

captured the average addition of each specific dealer to the spreads it charges in crisis times.

The interaction of a fixed effect with the date variable does even more. Continuing with the

same example, the interaction of a dealer and date fixed effects not only (indirectly) embeds

the changes in the spreads dealers charge during a crisis, it also controls for changes in these

spreads throughout different phases of the crisis period. To see that, assume that less liquid

bonds are traded in more concentrated markets and that they are typically traded only deep

into the crisis when spreads are higher. In that case, the interaction term of date and liquidity

will capture the expected change in the spread of a bond with a certain liquidity level, given

that it was traded at a specific time in the crisis. That, in turn, will prevent these changes from

contaminating the estimate of β2.

In table 6, I report the results of applying the regression model to the COVID-19 crisis and

the period proceeding it (columns 1-3) and to the 2007-2009 crisis and the period proceeding it
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(columns 4-6) 3. In each, I run the analysis on the full sample, only on trades in which a customer

sells to a dealer (C2D) and only on trades in which a dealer sells to a customer (D2C). What

we can see is that in both crises period, higher concentration was correlated with a substantial

increase in spreads in trades in which a customer sells to a dealer. In the great recession, a 10 bps

increase in HHI was correlated with a 1.6 bps higher “jump” in the spreads in customer-to-dealer

trades in a crisis. In the COVID-19 crisis it was correlated with a staggering 9 bps rise in the gap

between spreads pre-crisis and during the crisis period. In both cases, the result is statistically

significant. This pattern is exactly what we predicted if dealers indeed exploit the distress of

customers in dire need of liquidity to charge higher markup for inter-mediation. Interestingly,

for cases in which a dealer sells to a customer, we see the opposite effect - higher concentration

presages a milder increase in the spreads in times of systemic distress. In absolute size, the

effect is about half the size of what we see with customer-to-dealer trade. In the next few pages,

as we turn to take a closer look at the regression analysis, we see that this correlation, while

statistically significant in this specification, is not robust and is likely to be explained away as a

spurious correlation originating from limitations of the spread measure.

For that, I begin by running the regression model in equation 4 with one minor change - rather

than treating the HHI as a continuous variable, I divide it into bins and regard it as a categorical

variable. I choose bins at the length of 10 bps, besides the bins at the edges, 0-0.3 and 0.6-1,

that span over a wider range to compensate for these levels being much more sparsely populated.

The coefficients and 95% confidence intervals from applying these regressions to the COVID-19

crisis appear in plot 7. Again, they present these coefficients for the entire sample (black), for

trades in which a customer sells to a dealer (red), and for trades in which a dealer sells to a

customer (blue). Let us begin with trades in which a customer sells to a dealer. We see a pattern

that looks almost like a linear upward slope, indicating that higher HHI levels presage a greater

increase in spreads. The results are statistically significant, with the 95% confidence interval

being far above zero. An important feature to note is the positive and sizeable coefficients at

HHI levels of 0.3-0.4 and 0.4-0.5. This indicates that even when comparing a competitive market,

that is HHI of 0-0.3, to somewhat less competitive markets, like the one with an HHI of 0.3-0.4,

we see a change in the response of spreads to a crisis. This is critical as about 80% of trade

3For full results that also report the coefficients on control variables, see table 12 in the appendix
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Dependent Variable: spread
COVID-19 Crisis GRC

Population: All C2D D2C All C2D D2C

Variables
HHI 5.7∗∗∗ (1.4) 13.7∗∗∗ (1.1) 0.64 (0.92) -0.01 (5.9) 9.3∗∗ (4.1) -0.21 (3.2)
HHI × crisis indicator 27.6∗∗∗ (8.4) 92.0∗∗∗ (9.8) -43.2∗∗∗ (9.6) 2.0 (8.4) 16.0∗∗∗ (5.7) -8.4∗ (4.3)

Fixed-effects
rating Yes Yes Yes Yes Yes Yes
trade size Yes Yes Yes Yes Yes Yes
dealer Yes Yes Yes Yes Yes Yes
dealer-date Yes Yes Yes Yes Yes Yes
date Yes Yes Yes Yes Yes Yes
# days traded (prv. year) Yes Yes Yes Yes Yes Yes
# days traded (prv. year)-date Yes Yes Yes Yes Yes Yes
rating-date Yes Yes Yes Yes Yes Yes
trade size-date Yes Yes Yes Yes Yes Yes

Fit statistics
Observations 1,375,793 656,133 719,660 621,479 271,191 350,288
R2 0.11938 0.25548 0.21531 0.19310 0.36171 0.36307
Within R2 0.00693 0.00936 0.01212 0.00485 0.00735 0.00997

Clustered (rating) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Table 6: Results from applying the standard model (eq 4) to the Covid-19
crisis and the period proceeding it and to the GRC and the period proceeding
it; Abbreviated.
Note: The data relied upon to generate this table was TRACE Data provided
by FINRA's TRACE System

volume during a crisis is trade in bonds with an HHI of 0.3-0.5 (see 7). Hence, changes in the

behavior of these bonds in a crisis can have a sizable impact on the aggregate behavior of the

market.
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Figure 7: Results from applying the standard model (eq 4) to the Covid-
19 crisis and the period proceeding it while treating the bond HHI as a
categorical variable.
Note: The data relied upon to generate this table was TRACE Data provided
by FINRA's TRACE System

HHI share of volume

0-0.3 0.11

0.3-0.4 0.59

0.4-0.5 0.19

0.5-0.6 0.06

0.6-0.7 0.02

0.7 - 1 0.02

Table 7: The share of volume bought by dealers in principal capacity by the
bond HHI during the Covid-19 crisis.
Note: The data relied upon to generate this figure was TRACE Data provided by FINRA’s TRACE System.
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With trades in which dealers sell to customers the pattern is a bit more complex. There, we

see a sizable and statistically significant difference only at HHI levels that are greater than 0.5.

There are two things to keep in mind about results that persist in this range. First, since there

are fewer trades in bonds with this HHI in the sample, the result is more susceptible to error.

Second, note that in a market for a bond that with a single market maker dealer may not have a

substantial advantage over customers. In such a market, dealers’ ability to easily find and trade

with any other dealer is less likely to grant them access to multiple potential counter-parties.

Thus, the market maker may exploit other dealers’ distress to buy cheap from them and sell at

a higher price to a customer. That will appear as a negative spread.

A concern that may arise is that the pattern we find in the dealer-to-customer trades reflects

changes in the fundamental prices of bonds over time. More specifically, a decline in fundamental

prices of bonds will mechanically turn the benchmark price, determined by an earlier trade

between two dealers, to a higher price than the current trade price. The change will be more

pronounced for less liquid bonds, for which the trades are typically more far apart. As higher

concentration is typically correlated with lower liquidity, we will get a bias that operates in the

same direction as our coefficients - it will imply that in more concentrated markets, customers

sell and buy at a higher discount. That will be manifested in a positive coefficient on the

interaction term of HHI and a crisis in customer-to-dealer trades, and a negative coefficient in

dealer-to-customer trades.

To address this concern, I run the same regression with HHI bins again, but this time I limit my

sample to trades for which the dealer-to-dealer trade that determines the benchmark price to

calculate the spreads occured in the same day as the trade itself. The results appear in plot

8. What we can see is that the pattern of higher increase in coefficients for more concentrated

markets in trades in which customers sell to dealers persists. The coefficients are about the

same sizes as before and are all statistically significant at 1% confidence level. In contrast, the

results for trades in which dealers sell to customer are less salient. Besides 0.6-1, neither of the

other bins implies a statistically significant decline in spreads across markets with varying levels

of competition. In other others, much of the correlation between higher HHI and lower spreads

in dealer-to-customer spreads is indeed spurious and driven by changes in fundamental prices.

In contrast, such changes do not seem to drive the correlation in trades in which customers sell
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to dealers.

Figure 8: Results from applying the standard model (eq 4) to the Covid-
19 crisis and the period proceeding it while treating the bond HHI as a
categorical variable. Limiting to cases in which the transaction that generated
the reference price occurred at the same day as the trade itself.
Note: The data relied upon to generate this table was TRACE Data provided
by FINRA's TRACE System

In plots 9 and 10 we see a similar pattern in the 2007-2009 crisis. Again, we see that the

coefficients on the interaction term between HHI and the crisis indicator are all positive, sizeable,

and statistically significant. They exhibit an upward trend. There is a break in that pattern

as the coefficient on the interaction term on the range between 0.6-1 is smaller than the one

in the range of 0.5-0.6. However, even a glance with the naked eye at the confidence intervals

of the two we can see that this difference is not statistically significant. These results persist

when we limit out attention to cases when the benchmark trade occurred on the same day as

the trade itself. In contrast, with trades in which dealers sell to customer the pattern is more

complex. The coefficients on the interaction term with the crisis indicator for HHI of 0.3-0.4
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and 0.6-1 are close to zero and not statistically significant. Limiting our attention to cases

when the benchmark trade occurred on the same day, the interaction term for HHI of 0.5-0.6

losses statistical significant as well and the overall pattern of coefficients does not exhibit a clear

monotonic pattern dominating the relationship between HHI and the rise in spreads in a crisis.

Figure 9: Results from applying the standard model (eq 4) to the 2007-
2009 crisis and the period proceeding it while treating the bond HHI as a
categorical variable.
Note: The data relied upon to generate this table was TRACE Data provided
by FINRA's TRACE System

As a further robustness test, I run an alternative regression model:

Spreadi,d,b,t = α0 + ρb ∗ ηd ∗ νi + β2 ∗HHIb,t−1 ∗ I{Crisis}+

ηd + trade date+

ηd ∗ trade date + ξb ∗ trade date + νi ∗ trade date + λb ∗ trade date (5)
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Figure 10: Results from applying the standard model (eq 4) to the 2007-
2009 crisis and the period proceeding it while treating the bond HHI as a
categorical variable. Limiting to cases in which the transaction that generated
the reference price occurred on the same day as the trade itself.
Note: The data relied upon to generate this table was TRACE Data provided
by FINRA's TRACE System

In this model, I control for an interaction term of a bond-dealer-volume fixed effect (ρb ∗ ηd ∗ νi).

Thus, the model compares trades made by the same dealer, trading the same bond, in the same

volume (bin) before and during a crisis. The control for a bond fixed effect makes the use of

bond attribute controls redundant (but not the use of interaction terms between those terms and

the date). On a deeper level, it prevents potential bias due to the omission of bond attributes.

In this regression, the “jump” in the spreads that a dealer will charge consists of an average

increase in the spreads due to the crisis time, embedded into the trade date fixed effect, in

addition to the term β2 ∗HHIb,t−1 ∗ I{Crisis}. The latter captures the same correlation that it

embedded in the original model appearing in equation 4: the expected differences in the “jump”

for bonds with varying levels of concentration. For the same reasons explained before, I control
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for the interaction term between dealer, rating, and liquidity fixed effects and the date. The

results appear in plot 11.

Figure 11: Results from applying the regression model in equation 5 to the
COVID-19 crisis and the period proceeding it. HHI is treated as a categorical
variable.
Note: The data relied upon to generate this table was TRACE Data provided
by FINRA's TRACE System

The result for customer-to-dealer trade remains almost exactly the same as in the original

regression model. In contrast, the coefficients on the interaction term between HHI and a crisis

for trades in which dealers sell to customers hover around zero for any HHI besides 0.6-1, where

they appear negative. That, again, may reflect dealers praying on the distress of other dealers

to buy at substantial discounts. Either way, this is evidence of the robustness of the correlation

between concentration and the rise in spreads paid by customers that seek to attain liquidity

during a crisis. In contrast, the support that the data lends to correlations between the change

in spreads in a crisis and the bond HHI for trades in which dealers sell to customers, which are

not implied by the logic that guides this paper, seems much more ambiguous. Thus, from this
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point on, I focus merely on customer-to-dealer trades.

Now, I run a few more robustness tests. First, I run another regression model with an alternative

liquidity measure. Rather than using the number of days in which the bond was not traded,

I use the median of the difference between the time that a dealer purchases a bond and the

next time he gets to sell it. That serves as a proxy of the expected holding period. To avoid

bias due to the presence of agency trades, I ignore cases in which the dealer holds the bonds

for less than one day. For each trade, I calculate this statistic based on trades of the bond in

the previous year to avoid bias due to reverse causality. Further, I change this proxy into a

categorical variable by dividing it into bins by percentiles, with each bin covering a range of 5

percentiles.

The main reason to run the regression with this liquidity measure is to address a concern for bias

due to the thinness of the inter-dealer market for bonds with high levels of HHI. Concentration

implies that a dealer will have greater difficulty selling the bond to another dealer to attain

liquidity. That may lead a dealer to require a higher compensation, manifested in greater spread.

That is especially true during a crisis when the cost of committing capital to hold a bond for a

prolonged period of time in the dealers’ portfolio greatly increases. The control for the dealer’s

expected holding period mitigates this concern. Bonds that do not easily trade in the inter-dealer

market will have a longer holding period, as a dealer will be less likely to address transient

liquidity needs by trading them. Hence, this liquidity measure will capture costs imposed on the

dealer that originate from the breadth of the inter-dealer market.

The results of this regression appear in column (2) of table 8. We see that the inclusion of this

liquidity measure diminishes the interaction term of HHI and the crisis indicator from 90 bps to

75 bps. Thus, while this dimension of liquidity may have a role in shaping spreads, it cannot

account for the correlation between concentration and the rise in spreads in crisis we find in the

data.
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Dependent Variable: spread

Model: (1) (2) (3)

Variables

HHI 13.7∗∗∗ (1.1) 15.3∗∗∗ (1.5)

HHI × crisis indicator 92.0∗∗∗ (9.8) 89.8∗∗∗ (10.0) 71.0∗∗∗ (26.0)

rule 144a -7.1∗∗∗ (0.60) -7.7∗∗∗ (0.90) -339.5 (1,038.1)

sqrt(age) -0.11∗∗∗ (0.01) -0.11∗∗∗ (0.02) 0.99∗∗ (0.45)

sqrt(time to maturity) 0.20∗∗∗ (0.01) 0.24∗∗∗ (0.03) 0.65∗∗ (0.26)

sqrt amtout issr −5.1× 10−5∗∗∗ (2× 10−6) −4.8× 10−5∗∗∗ (2.6× 10−6) 0.001 (0.003)

sqrt(amount outstanding) -0.0002∗∗∗ (1× 10−5) -0.0002∗∗∗ (1.5× 10−5) -0.0003 (0.01)

coupon rate 2.3∗∗∗ (0.15) 1.6∗∗∗ (0.19) 1.1 (0.72)

foreign -1.3∗∗ (0.68) -2.1∗∗ (0.81) 756.7 (2,746.5)

global -0.52∗∗ (0.26) -0.16 (0.28) 192.7 (752.1)

finance -1.9∗∗∗ (0.29) -1.3∗∗∗ (0.41) -1,057.7 (822.0)

utility -3.0∗∗∗ (0.57) -3.4∗∗∗ (0.64) -1,266.6 (1,691.3)

Fixed-effects

rating Yes Yes Yes

trade size Yes Yes Yes

dealer Yes Yes Yes

dealer-date Yes Yes Yes

date Yes Yes Yes

# days traded (prv. year) Yes Yes

# days traded (prv. year)-date Yes Yes

rating-date Yes Yes Yes

trade size-date Yes Yes Yes

exp. holding time Yes

exp. holding time-date Yes

HHI Yes

issuer Yes

issuer-date Yes

Fit statistics

Observations 656,133 874,707 1,270,641

R2 0.25548 0.23435 0.70151

Within R2 0.00936 0.00904 0.00024

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Table 8: Comparing the standard model (eq 4) to two other benchmarks for
the COVID-19 crisis: one using expected holding time as a liquidity measure
and the other including issuer fixed effects.
Note: The data relied upon to generate this table was TRACE Data provided
by FINRA's TRACE System

42



Now, we also run our original regression model with an issuer fixed effect. By that, we compare

bonds of the same issuer traded in the market with varying concentration levels. That can be

caused, for instance, by institutional constraints that prevent certain dealers who are familiar

with the issuer from trading some of its bonds. The reason for including the issuer’s fixed effects

is to control for potential supply shocks. That is, it mitigates the concern that concentration is

correlated with features of the bond that make it more appealing to specific types of customers.

Thus, the correlation of concentration and spreads may simply represent the fact that those

customers were subject to more dire liquidity shocks during the crisis 4.

The results appear in column (3) of Table 8. Again, while a dealer fixed effect diminishes

the coefficient on the interaction term from 90 to 71, yet the coefficient remains statistically

significant and sizable.

Lastly, in table 6, I gradually add fixed effects to a regression to arrive at the main model

appearing in equation 4. What we can see is that the addition (or omission) of fixed effects has

very little impact on the regression. Overall, the coefficients remain very stable at a level of

about 90 bps. This is further evidence of the robustness of the main result and its independence

from the specifics of the regression model that was chosen.

As mentioned, the analysis is not founded on random assignment of treatment, and hence the

coefficients cannot be interpreted as proper estimates of the causal impact of concentration on

spreads. However, while they cannot provide a precise measure, they may imply an order of

magnitude that allows interpreting the relevance of concentration in OTC markets to the rise in

the cost of trading (spreads) in a crisis. For that purpose, I calculate the regression prediction

for the increase in spreads in times of crisis in a world with an identical composition of bonds

but for the fact that all bonds are traded in highly competitive markets with HHI being lower

than 0.3. I weigh the importance of the change in spreads for each HHI bin according to the

share of volume traded in the crisis accounted for by bonds in that bin. That is, I compute the

weighted sum:

4I am grateful to Dasol Kim from the Office of Financial Research for raising this concern and offering to add
an issuer fixed effect.
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∑
HHI

β2,HHI ∗ volume shareHHI = 0.59 ∗ 10 + 0.19 ∗ 17 + 0.06 ∗ 31 + 0.04 ∗ 42... ≈ 12.6

As a benchmark, table 9 presents the volume-weighted spread during the COVID-19 crisis

and the period preceding it in customer-to-dealers trades. As we can see, the weighted spread

increased by about 64 bps. Hence, the regression predicts that in a fully competitive market,

the increase in the spread increaseVID-19 crisis would have been 20%

Period Mean spread

Pre Covid-19 Crisis 18.57

Covid-19 Crisis 82.57

Table 9: Mean spread charged by dealers when buying from customers on
principal capacity (trades over $100,000). Weighted by quantity traded.
Note: The data relied upon to generate this figure was TRACE Data provided by FINRA’s TRACE System.

Now, I document the behavior of the volume of trades across different concentration levels. The

HHI is divided into categories, and all the volume traded in the bonds included in each bin is

summed up. Then, I calculate the percentage change between the total volume of all bonds

included in each bin between a time of crisis and a period of similar length that precedes it.

Figure 12 shows the percentage change in volume traded between the Covid-19 crisis and the

months that preceded it. One can see that bonds traded by fewer dealers exhibit a more

significant relative decline in volume during the Covid-19 crisis. The trend gradually increases

with HHI, meaning a more substantial reduction in volume for more concentrated markets. This

is important for two reasons. First, this paper’s hypothesis implies that dealers will exercise

market power more aggressively. They will be more inclined to sacrifice volume to raise the

return per transaction. Second, volume is the primary concern of regulators. The problem with

dealers’ use of market power is not that it generates profits for dealers at the expense of their

customers (in fact, some may even see that as a silver lining - improving dealers’ access to capital

and their ability to keep operating throughout the crisis). Instead, the problem is that when
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Figure 12: Change in volume bought by dealers in principal capacity by
HHI: The Covid-19 crisis and the preceding period.
Note: The data relied upon to generate this figure was TRACE Data provided by FINRA’s TRACE System.

dealers do so, they limit trade and prevent the reallocation of liquidity from customers that

are better off to those that are distressed. This can be considered an analogy to the classical

monopoly problem, where the concern is the “underproduction” of intermediation services.

The plot implies sizeable differences in the response in volume to distress during a crisis. It is

possible to use it, alongside the share of volume traded by HHI level (appearing in Figure 3), to

approximate the difference between the decline in volume in a highly competitive market (HHI

of 0.3 or less) to what we find in the data. Let Qhs denote the share of trade in bonds with an

HHI in the set hs, and let ∆hs denote the decline in volume for bonds in that set. The weighted

decline in volume, according to the data, is

∑
hs

Qhs∗∆hs = 0.25∗−0.22+0.25∗−0.28+0.15∗−0.32+0.1∗−0.28+0.1∗−0.37+0.15∗−0.47 = −0.3.

The change in volume in a highly competitive market is −0.22. That is, the decline in volume
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Figure 13: Change in volume bought by dealers in principal capacity by
HHI: The 2007-2009 crisis and the preceding period.
Note: The data relied upon to generate this figure was TRACE Data provided by FINRA’s TRACE System.

in the market is 36% greater than what we expect in an economy where all markets have an

HHI of 0.3 or less. The calibration exercise assesses which part of this difference originates from

changes in the way that dealers exercise their market power.

Figure 13 represent the same phenomenon for the 2008 crisis. Here too, there is a correlation

between HHI and the decline in volume. However, it is somewhat more muted compared to the

Covid-19 crisis.

3 Model

There is an economy that lasts for two periods, 0 and 1. It is populated by an infinite and

discrete number of dealers and an infinite and discrete number of customers. All players are

expected utility maximizers and risk neutral. There are infinitely many bonds in the economy.
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Each customer holds one bond and may choose to sell it to a dealer. Dealers are assumed to

have “deep pockets”.

Each bond is of high value vh with probability qh, or of low value vl < vh with probability

1− qh. A bond value reflects its risk of default. In most cases, the bond’s observable attributes,

especially its rating, will disclose this risk. In this setting, vh is the value of a typical bond. In

contrast, vl is the value of a bond that is riskier than what is implied by its observable attributes,

and especially rating. Accordingly, qh is the likelihood that the investor will discover that its

rating correctly gauges the risk involved in holding it after acquiring information about the

bond.

Customers know the value of the bonds, while only a share of the dealers knows it. This

assumption can be thought of as if the market consists of both “insiders”, who constantly

operate in it, and “outsiders” who can access it but typically do not trade. Customers know the

assets that they usually hold and trade. In contrast, they face some dealers who are familiar

with that asset and some that are not 5.

Dealers can acquire information. They can perfectly learn the realization of vj with probability λ

by paying a cost of c(λ). The cost function c() is increasing, convex, differentiable, and satisfies

the Inada condition (c′ > 0; c′′ > 0; c′(0) = 0; limλ→1c
′(λ) = inf).

In period 0, dealers acquire information about the bond. First, they choose λ. Then, each

dealer learns the quality of each bond with probability λ. The probability that n dealers become

informed about a quality of a bond will be

λ
e−λ

n!

.

After the results of the attempts to acquire information are realized, all players in the market

5The claim that customers can be equally or more informed than dealers finds support in the literature
studying dealers’ exposure to adverse selection. Easley and O’hara (1987) is a seminal work that argues that
adverse selection manifests in higher volume associated with higher spreads. More recently, Chalamandaris and
Vlachogiannakis (2020) documents that institutional investors, accounting for most of trade, typically earn excess
returns on their trade in the bonds market. This is especially relevant to this paper, which focuses solely on
trades that are larger than $100,000, and, therefore, more likely to involve institutional investors rather than
retail.
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learn the number of dealers who became informed about each bond.

At the beginning of period 1, each customer gets hit by a liquidity shock δi > 0. Due to the

shock, the customer values the asset at vj − δi, j ∈ {l, h}. We assume that:

δi =

δr w/ prob. (1− ξ)

δs w/ prob. ξ,

where δs > δr > 0. The liquidity shock is private information. Dealers do not know it, and

customers cannot provide a reliable signal about its value.

Dealers then submit bids to customers for each one of the bonds. All dealers are submitting

bids to all customers. Following Lester and Olivier-Weill (forthcoming), it is assumed that, with

some probability π, the bid fails to be delivered. π encapsulates the forces that may prevent a

customer from receiving from a prominent dealer. A customer may not know of the dealer, or

the dealer might not have the liquidity required to serve the customer.

The number of bids a customer gets from informed players has a binomial distribution. It is

the number of successes in n trials (with n informed dealers) with a success rate of (1− π). At

the same time, the customer always gets infinitely many bids from uninformed players. This

assumption reflects the notion that one can always sell a security as long as it gives a sufficient

discount, that is, a discount that compensates the potential buyer for buying a security he knows

nothing about.

After receiving bids, the customer chooses which one to accept, if any. Afterward, payoffs are

realized, and the economy comes to an end. The equilibrium notion is:

Definition 3.0.1. Symmetric equilibrium consists of the following:

1. Dealers’ choice of the likelihood of becoming informed λ;

2. The distribution of the number of informed dealers trading each bond, denoted by the Γ(n);

3. The strategy of the uninformed player, BU(n) 6.

6Note that we assume that the uninformed plays a pure strategy and bids BU . It is later shown that the
assumption is benign.
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4. The strategy of the informed, Fn().

That satisfies the conditions:

1. Given n and Fn(), there exists no bid B such that a deviation of a single informed player

from BU(n) to B strictly increases its payoff.

2. Given n, BU (n), and Fn(), the bids submitted by the informed maximize its expected payoff.

3. The return from buying a bond for BU(n) is non-negative 7.

4. The number of informed dealers has a Poisson distribution with arrival rate λ.

5. Dealers’ choice of λ maximizes their ex-ante expected payoff.

The model is solved backward, beginning with finding how trade evolves, and later moving on

to studying information acquisition. We assume, WLG, that vl < vh − δs < vh − δr < vh. This

section begins by solving for the markets in which n > 1. The unique cases in which n = 0

and n = 1 are studied later. Lastly, this section focuses on symmetric equilibrium, where all

informed players choose the same strategy.

3.1 Benchmark model - No Uninformed Dealers

We start by solving for equilibrium in a simplified version of the model. Specifically, we assume

that there is no heterogeneity among customers, that is, that ξ = 0. Further, we will look at a

different environment in which there are no uninformed dealers. Doing so will allow us to focus,

for the time being, on the forces that govern the behavior of the informed. Also, it highlights

the role of the uninformed dealers by allowing one to compare the outcome of the model with

them and without them.

7The equilibrium has two optimality conditions for the uninformed: (1) and (3). Adding condition (3) allows
us to avoid abnormal behaviors due to our assumption that there is an infinity of uninformed players. Specifically,
this assumption implies that each uninformed has a probability of 0 to win and can potentially allow for an
equilibrium in which they all make a losing bid. Since the assumption of an infinite number of informed is made
simply for mathematical simplicity and reflects the idea that there are many uninformed players, losing bids are
unlikely. Adding condition (3) bans them from being a part of an equilibrium.
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Let R̄i
n denote the reservation value of a customer of type i ∈ {r, s} for a high-quality bond.

That is, this is the minimum bid a customer who got hit by a liquidity shock of δi will accept

for it. In the current setting with a single type of customer: R̄r = vh − δr

Recall that Fn() denotes the CDF of the bids submitted by informed dealers. Following Burdett

and Judd (1983), we can show that F is continuous (no atoms), originates at the customer

reservation value, vh − δr, and is strictly increasing on the range [vh − δr, B̄(n)] (connected

support) where vh > B̄n > vh − δr.

Further, following Weill (2020) and Lester and Olivier-Weill (forthcoming), we can show that the

probability that the number of informed dealers that submitted a bid has a binomial distribution

with n trials and a success rate of 1− π. Also, note that the probability that a single dealer bid

lower than B is F (B), and hence the probability that all k competitors bid below it is F (B)k.

Using this, we can write the problem of the informed as:

max
Fn(B)

∫
B

(vh −B)Pr(B is the highest bid)Pr(B ≥ R̄i)dF (B) =

max
Fn(B)

∫
B

(vh −B)
n−1∑
k

(
n− 1

k

)
πn−1−k(1− π)kF (B)kI{B ≥ vh − δr}(vh −B) (6)

By optimality, the informed dealer is indifferent between all bids that are on the support of Fn().

We know that the lowest bid on the support is R̄i = vh − δr, and that this bid wins if and only

if all other dealers fail to submit a price. Hence, for any B in the support of Fn():

πn−1δr =
n−1∑
k

(
n− 1

k

)
πn−1−k(1− π)kF (B)k(vh −B) (7)

The last equation, which we will refer to as the informed player optimality condition, implicitly

defines the strategy of the informed, Fn(). We find that it is fully determined by the following:

(i) the value of the security, vh, (ii) the number of informed players, n, (iii) the likelihood that a

dealer fails to submit a bid, π, and (vi) the reservation value of the customer, R̄i.

The bids of the informed are strictly increasing in the number of competitors, n. Or, to be more
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vl vh − δr vh

Fn(B)

Figure 14: The CDF of bids by informed in a setting with no uninformed
and assuming ξ = 0.

vl vh − δr vh

F2(B)F3(B)

Figure 15: The bids of the informed in a market of two players and three
players.

precise, we can state that:

Lemma 3.1. Fn(B) < Fn+1(B) for any B in the support of Fn().

For the proof, see the appendix. The intuition behind the lemma is simple - the more players are

in the market, the greater the decline in the prospects of winning the bond due to submitting a

lower bid. Hence, greater competition pushes dealers towards higher bids (or lower spreads).

3.2 Adding Back the Uninformed

Now, we go back to the benchmark model by allowing ξ > 0 and letting the uninformed back in.

How does that impact the outcome of the model?

Theorem 3.2. When the security is of high quality, the informed bids are always strictly higher

than BU∗
.

The intuition is simple: the uninformed always gets to submit a bid. Hence, a bid below BU(n)

can never win the bond. The informed is better off bidding higher and enjoying some chance of

making a return. For the full proof, see the appendix.
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That is BU (n) sets a new lower bound for the bids of the informed that might be accepted by a

customer. In other words, now that customers have the option of trading with an uninformed

player, their reservation value cannot be below the price that such a dealer will offer.

Further - the lemma already highlights the origin of concentration in our model. Informed

dealers will bid more aggressively and win a larger share of the market. In that sense, our model

implies that information will be reflected in having a substantial share of the volume of trade.

vl vh − δs vh − δr vh

F2(B)F3(B)

BU (n)

Figure 16: Equilibrium when BU (n) > vh − δr: two or three informed
players.

We proceed to characterize the behavior of the uninformed. By our assumptions, the expected

return of the uninformed in case of winning the bond by bidding BU cannot fall below 0. By

optimality, either can it be strictly above zero since in that case, bidding BU + ϵ increases the

likelihood of bidding the bond from zero to something strictly positive, while still generating a

strictly positive return.

Hence, the uninformed always break even, that is:

BU(n) = q̂h(B, n) ∗ vh + (1− q̂h(B, n))vl (8)

Where B̃ denotes the price at which the security was sold, and q̂h(B, n) is the likelihood that

the bond is of high quality given that is was bought for a bid of B in the presence of n informed

players in the market:

q̂h(B, n) = Pr(j = h|B̃ = B, n)

We can pin down q̂h(B, n) using Bayes Rule:

q̂h(B, n) =
Pr(B̃ = BU(n)|j = h, n)

Pr(B̃ = BU(n)|n)
qh
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By lemma 3.2, we know that the bid submitted by the uninformed may win the bond when it

is of high quality only if all informed players remain out of the market, which happens with

probability πn. In addition, we require that such a bid will be higher than the value that the

customer assigns to the bond, vh − δi. Therefore, we can write:

Pr(B̃ = BU(n)|j = h, n) = πn ∗ Pr(BU(n) ≥ vh − δi)

Assume that BU(n) ≥ vh − δr. That is, the uninformed is submitting a bid that appeals to all

participants in the market. Thus: Pr(BU (n) ≥ vh−δi) = 1, and: Pr(B̃ = BU (n)|j = h, n) = πn.

Plugging these expressions back into our function for q̂(B, n), we find that the probability that

a bond bought by the uninformed is of high quality is:

q̂h(B, n) =
πnqh

πnqh + 1− qh

Plugging that back into our expression for BU(n):

BU(n) =
πnqh

πnqh + 1− qh
vh + (1− πnqh

πnqh + 1− qh
)vl

We check for consistency with our original assumption, BU(n) ≥ vh − δr:

BU(n) =
πnqh

πnqh + 1− qh
vh + (1 − πnqh

πnqh + 1− qh
)vl =⇒ πnqh

πnqh + 1− qh
≥ 1 − δr

vh − vl
(9)

That is, the uninformed might submit a bid that appeals to all sellers of the high-quality bond

only if:
πnqh

πnqh + 1− qh
≥ 1− δr

vh − vl
(10)

Lemma 3.3. (bid of the uninformed) The bid submitted by the uninformed is:

BU(n) = q̂(BU(n), n)vh + (1− q̂(BU(n), n))vl
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Where if:
πnqh

πnqh + (1− qh)
> 1− δ

vh − vl
(11)

Then:

q̂(BU(n), n) =
qhπ

n

qhπn + (1− qh)
, and BU(n) ≥ vh − δr

Else, if:
ξπnqh

ξπnqh + (1− qh)
> 1− δs

vh − vl
(12)

Then:

q̂(BU(n), n) =
ξqhπ

n

ξqhπn + (1− qh)
, and vh − δr > BU(n) ≥ vh − δs

If neither of these conditions hold, q̂(BU(n), n) = 0 and BU(n) = vl

For full proof, see the appendix.

Note what the submission of such a high bid by the uninformed depends upon. The likelihood

of such a bid is declining in the number of informed dealers, n, and increasing in the likelihood

that they cannot bid, π. This is because the presence of informed players makes it less likely

that someone selling a high-quality bond will end up trading with the uninformed. In other

words, it exacerbates the adverse selection problem it is facing.

Of course, adverse selection is also more significant when the share of high-quality assets, qh, is

small or when the value of a low-quality bond is far smaller than that of a high-quality bond,

that is, when the gap vh − vl is increasing.

If condition 10 does not hold, one of two things may occur. First, the uninformed may play more

prudently by competing only for low-quality bonds. In such a case, BU(n) = vl. Alternatively,

the uninformed might find it optimal to submit a bid in the range [vh − δ, vh − δ].

The following theorem gives a complete characterization of the behavior of the uninformed:

We noted before that BU(n) sets a lower bound of the price at which a bond might be sold

to an informed dealer. By this, we will enrich our notation slightly by rewriting the customer

reservation price (from the informed dealer perspective) as follows:

R̄i
n = max{vh − δi, B

U(n)}
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Accordingly, we can restate the problem of the informed dealer by:

max
Fn(B)

∫
B

(vh −B)
n−1∑
k

(
n− 1

k

)
πn−1−k(1− π)kF (B)kI{B ≥ R̄i

n}(vh −B) (13)

Using this new notation, we proceed to state the shocks’ irrelevance theorem:

Theorem 3.4. (Shocks irrelevance theorem) If:

πnqh
πnqh + 1− qh

> 1− δr
vh − vl

(14)

Then:

1. The outcome of the model is independent of δs, ξ.

2. All bids are strictly greater than vh − δr.

3. All customers always get to trade.

Proof. When condition 14 holds, the uninformed is submitting a bid greater than vh− δr. Hence,

all customers will always prefer to trade with the uninformed over not trading at all. That

implies that R̄i(n) = BU (n) for both δr, δs. Using it, we can rewrite the problem of the informed

as:

max
Fn(B)

∫
B

(vh −B)
n−1∑
k

(
n− 1

k

)
πn−1−k(1− π)kF (B)kI{B ≥ BU(n)}(vh −B) (15)

The problem is identical regardless of the share of customers hit by a severe liquidity shock, ξ,

and the size of that shock, δs. Since the informed always bids above the uninformed, its bids

will satisfy the following:

B ≥ BU(n) > vh − δr, ∀B ∈ suppFn()

Lastly, since the uninformed submit bids that are greater than the customer reservation price

regardless of the bond quality and the size of the liquidity shock incurred, all customers get to

trade.
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vl vh − δs vh − δr vh

Fn()

Fn()

BU (n)

Figure 17: Equilibrium in which the informed submit bids below vh − δr
and the uninformed bids vl.

In other words, when the adverse selection problem in the market is not very dire, liquidity

shocks to the customer sector do not affect it. This is because informed dealers cannot exploit

the distress to submit lower bids that solely target customers who got hit by severe shocks. Such

bids will be turned down in favor of better offers given by the uninformed. Further, in such

circumstances, changes in the number of informed dealers, n, will have a much weaker impact

on spreads and volumes. We shall see that in more detail below.

3.3 Response to Liquidity Shocks

From here on, I focus on the case in which condition 14 does not hold unless otherwise stated. In

such a case, informed players might choose to submit bids that appeal only to distressed players,

that is, bids that are strictly lower than vh − δr. We now turn to characterize the behavior of

the informed in such a setting in more detail.

Lemma 3.5. (The informed bids fall into two separated regions) If limϵ→0F (vh−δ−ϵ) > 0, then,

there exists a number, vh − δs < d < vh − δ, [d, vh − δ) such that F (x) = F (d) ∀x ∈ [d, vh − δ)

If the uninformed submits bids below vh − δr, there will be a ”hole” in the support of F (). The

intuition is that bidding vh − δr − ϵ (when ϵ is very small) is inferior to simply bidding vh − δr.

In the latter case, the returns of buying the security are slightly lower. Still, the likelihood of

successfully purchasing it increases substantially due to submitting a bid that appeals to players

hit by a liquidity shock of size δr. For the full proof, see the appendix.

Next, we find the condition in which the informed submit bids that target only the distressed

players:

Lemma 3.6. (Size of the liquidity shocks impact on the distribution of bids) Assume condition
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14 does not hold. If ξ > δr
(vh−R̄s)πn−1 informed dealers buy only from distressed players in

equilibrium. If ξ < δr
(vh−R̄s)

, their bids are always accepted by both distressed and non-distressed.

If ξ ∈ ( δr
(vh−R̄s)

, δr
(vh−R̄s)πn−1 ) some offers will be accepted by distressed players only while all will

accept others.

The theorem states that the more severe the liquidity shock, the more likely the informed are to

submit bids that appeal only to distressed players. For full proof, see the appendix.

Now, we compute the mean of the spread charged by the informed. By exploring it, we will get

a closer look at the impact of a strategy that targets distressed players on the behavior of the

market as a whole.

Theorem 3.7. ([Calculating the average spread) If informed dealers submit bids that are higher

than vh − δr and some that are low, the average spread they charge customers will be:

Ŝi(n) =
n(1− π)πn−1(vh − R̄s)

V i(n)

Where Vi(n), the total volume traded by informed players, is given by:

Vi(n) = (1− πn)[1− (1− ξ)
n∑

k=1

(
n

k

)
πn−k(1− π)k(F (vh − δ))k]

If all the bids submitted by the informed exceed vh − δr, then:

Ŝi(n) =
n(1− π)πn−1(vh − R̄r)

1− πn

And if all of these bids fall short of vh − δr, the average spread will be:

Ŝi(n) =
n(1− π)πn−1(vh − R̄s)

1− πn

The full proof appears in the appendix. It uses the equivalence of an informed dealer’s expected

and realized profit (due to bidding to a continuum of customers).

It is plain to see that the theorem implies that the share of the dealer in the surplus generated
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from trade:
n(1− π)πn−1

Vi(n)

It is strictly decreasing in n. Further, the change in the share of the surplus is a major force

in shaping spreads. It accounts for the difference in spreads between markets with a different

number of informed dealers. As we have shown above, those differences are sizeable. Note that

this property of the model separates it from the canonical studies of spreads in OTC using a

search-theory framework. In such a framework, the dealer’s share is constant (given by the

bargaining parameter, typically denoted by θ), and the driving force behind changes in the

spreads are changes in the surplus generated from trade.

Using the expressions we got for Ŝi(n), we can explore the predicted impact of concentration on

spreads. First, note the case in which some bids by the informed fall below vh − δr. In such

cases, competition will likely lead dealers to bid more frequently above vh − δr. Reassigning

a greater share of bids from the range below vh − δr to that above may substantially impact

the mean. This is because F () has a ”hole” in its support (see lemma 3.5), so there might be

a large difference in size between the highest bid that is lower than vh − δr and vh − δr. This

effect manifests in the appearance of F (vh − δr) in the equation determining the average spread

in such cases.

In contrast, when all bids submitted by the informed are above vh − δr, such a channel is not

operating. Thus, the impact of increasing the number of competitors is likely to be more muted.

That provides a possible explanation as to why the increase in a bond HHI presages a substantial

rise in spreads during distress but not in regular times. Unlike in normal times, during distress,

concentration impacts the likelihood that dealers submit bids that appeal only to customers

desperate for liquidity. That, in turn, dramatically increases the impact of the concentration

average bid.

Further, when we apply similar reasoning to consider theorem 3.4, we can see how uncertainty

can be a critical factor in augmenting the impact of market power in OTC. Without substantial

uncertainty, customers can always trade with uninformed dealers. Informed dealers will shy

away from bids that fall below vh − δr, which may significantly attenuate the impact of the

number of informed players on the realized bids.
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3.4 Endogenous Information Acquisition

Last, we use our model to find dealers’ choice of information acquisition. By construction, the

uninformed in our model always break even. Hence, the value of acquiring information, that is,

the importance of being informed rather than uninformed, is simply the expected profit of the

informed player.

In the proof of theorem 3.7, we saw that the expected return of the informed from participating

in a market with a total of n informed players is:

µs(1− π)πn−1(vh − R̄d)

Where R̄d is the reservation value of the non-distressed player if BU(n) ≥ vh − δr or if ξ <

δr
(vh−max{BU (n),vh−δs}) . Otherwise, R̄d is the reservation value of the distressed.

Also, recall that the number of informed dealers has a Poisson distribution with an arrival rate

of λ. Thus, the expected value of becoming informed with a probability of λ.

µsqh

inf∑
n=1

e−λn(1− π)πn−1(vh − R̄d)− c(λ) (16)

Taking the FOC, we get the following:

µsqh

inf∑
n=1

ne−λn(1− π)πn−1(vh − R̄d) = c′(λ)− c(λ) (17)

The RHS is the marginal cost of increasing the likelihood of successful information acquisition,

and the LHS is the marginal return. One immediate implication is that larger markets, that is

that markets with a higher µs, will see higher λ, and hence greater entry. That is consistent

with the finding that bonds with higher amount outstanding are typically traded in markets

with lower concentration levels.
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4 Calibration

The purpose of the calibration is to examine whether the mechanism described in the paper

can account for the magnitude of the differences in spreads and volume change across bonds in

markets with varying levels of concentration. In this context, the calibration will also be used

to address the question of why concentration presages a dramatic increase in spreads during a

crisis but is correlated with a more muted difference in regular times.

I assume that a crisis implies changes in the composition of the assets traded in the market,

captured by vl, qh, a tightening of dealers’ capital constraints, embedded in π, and an increase

in the demand for liquidity, manifested in a greater share of distressed customers (higher ξ). I

normalize the value of good assets, vh, to 1 in each period and am left with ten parameters:

vgl , v
b
l , q

g
h, q

b
h, π

b, πg, ξg, ξb, δr, δs

To mitigate selection bias, I calibrate the data to a subsample of transactions in which a dealer

buys from a customer bond rated ”BBB-” with a par value between 1Mto5M. I further limit

my attention to trades made by the top 50 dealers and exclude agency trades. Following Kargar

et al. (2021), I define the Covid-crisis as the period starting on March 5th, 2020, and ending on

April 10th of that year. I regard the ”normal” times as the pre-crisis period that starts on Jan.

1st, 2019 and ends with the onset of the Covid-19 crisis.

I begin by calibrating parameters that govern the behavior of the market in normal times, δr,

ξh. For δr, I use the measure of Chen et al. (2018), who estimated that sellers’ holding costs

of bonds rated Ba in normal times are 83 bps, and those rated Baa at 67 bps. Picking the

midpoint, where BBB− belongs, I set δr = 0.75. Alongside, I assume that ξg = 0. I will show

below that this assumption is benign.

Next, I calibrate parameters that determine asset composition: qih, v
i
l , i ∈ g, b. Recall that we

interpret vih as the value of a ”typical” bond in a specific market, where a market consists

of all bonds that have similar observable attributes. In contrast, vil is the value of bonds

that share those observable attributes despite being riskier. I interpret this to imply that if

someone had learned its true risk value, they would have assessed it as riskier than it appears.
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In other words, such a bond would be downgraded conditional on being audited by a rating

agency. I assume that bonds are audited at random, and hence the share of low-quality bonds,

1− qh, equals the probability of being downgraded conditional on a re-rating event (downgrade,

upgrade, or re-affirmation of its rating). Using the Mergent-FISD rating table, I find that in

the pre-crisis period, 13% of re-rating of bonds rated “BBB-” end with a downgrade (that is -

qgh = 0.87). Similarly, during the crisis, the likelihood of being downgraded increases to 18%, so

that qbh = 0.82.

Similarly, I consider vl as the expected value of a bond conditional on a downgrade. To estimate

the value of a bond, I use its price in dealer-to-dealer trades. Given that dealers operate in a

relatively frictionless market, the inter-dealer price of a bond should closely reflect its true value.

I concentrate on small trades (less than $10,000) to avoid biases stemming from differences in

holding costs across trades with varying volumes.

In the pre-crisis period, 54% of cases in which a BBB-” bond is downgraded result in an assigned

rating of BB+. In the remaining 46%, the assigned rating is BB. Using these probabilities as

weights, the expected value is νpre
dngrd,BBB− = 99.8. Following a similar procedure, I find that

in the crisis period νcrisis
dngrd,BBB− = 0.89. Remember that I normalized vh = 1. Consequently, vl

is defined based on the relative value of an inferior bond when compared to a standard one.

Denote the dealer-to-dealer price for BBB-” bonds in period P as νP
BBB− and note that:

vgl
vgh

= vgl =
νpre
dngrd,BBB−

νpre
BBB−

= 0.997, vcl =
νcrisis
dngrd,BBB−

νcrisis
BBB−

= 0.89

Note the wide gap separating the expected fall in prices due to a downgrade during the crisis

when compared to the pre-crisis period. This is not special to bond-rated “BBB-”, but rather

reflects a general widening between the price of bonds of different ratings in dealer-to-dealer

deals during the crisis. I regard this to indicate an increase cost of bearing idiosyncratic risk due

to the expected deterioration in market performance. As we shall immediately see, this increase

in the cost of risk plays a substantial role in facilitating the impact of concentration on market

performance in times of crisis.

Now, I turn to estimate the remaining four parameters: δs, ξ
c, πc, πg. I determine these values by

targeting the behavior of spreads in markets with varying degrees of competition. Consequently,
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I classify bonds into three bins: those with an HHI of 0.3-0.4, with an HHI of 0.4-0.7, and with

an HHI of 0.7-1. These groups represent markets with three informed dealers, two informed

dealers, and a single informed dealer, respectively. For each bin, I calculate the mean spread

during the pre-crisis and crisis periods. To minimize measurement error, I use a multi-step

process to estimate the mean for each period and concentration bin pair, including calculating

the mean for each bond-era pair, winsorizing, and computing the mean for all bonds within each

bin 8.

The spreads in the data appear in Table 10. As one can see, there is a clear trend of rising

spreads alongside HHI during the COVID-19 crisis. The differences between more and less

competitive markets appear substantial, as a transition from a three-informed players market

to a one-informed player market increases the average spread by about 70%. In contrast, in

regular times, we witness an increase in spreads when transitioning from 3 informed players to 2

informed players market, but then see almost the exact same spreads for n = 1 and n = 2.

HHI Spreads (pre-crisis) Spreads (crisis) Volume Change

> 0.6 24.41 169.3 -0.71

0.4-0.6 24.25 113.98 -0.33

0.3-0.4 15.37 98.80 -0.15

Table 10: Weighted mean - spreads by HHI, COVID-19 crisis and the period
proceeding it

I use the six average spread moments to calibrate the four remaining parameters. Specifically, I

choose parameters to minimize the percentage change deviation between the spreads in the data

versus those in the model, that is:

8I am gauging spreads using the O’Hara-Zhou method used in section 2.3. That is, for each trade, I find
the percentage deviation of the price that a dealer paid for it when buying it from a customer vs. the price
paid for it in the most recent dealer-to-dealer trade. To avoid bias, I limit my attention only to trades in which
the trade used to calculate the reference price occurred more than an hour but less than two weeks than the
time when the transaction took place. The purpose of ignoring spreads calculated using a dealer-to-dealer trade
that occurred less than an hour before is to exclude agency trades that might have been wrongly categorized as
principal. Alongside this, to limit the impact of outliers on my final results, I calculate the mean spread in a few
steps. First, I calculate for each bond-era pair a weighted mean of the spreads charged from customers who sold
it. As a weight, I used the inverse of the time that elapsed between the dealer-to-dealer trade used to gauge the
reference price and the current transaction. Then, I winsowrised the bond-level weighted mean at the 10% and
the 90% percentile level, with the purpose of diminishing the impact of outliers on my final result. Lastly, I take
a weighted mean over all bonds in each period and concentration category, using the number of trades in the
bonds as a weight.
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∑
i∈{g,c}

∑
n∈{1,2,3}

(
ˆ̄Si
n − S̄i

n

S̄i
n

)2 (18)

Where S̄i
n is the mean spread in state i in a market for a bond with n informed dealers in the

data and ˆ̄Si
n is its model equivalent. Also, I restrict the parameter space by requiring that it

will be harder to get a bid from a dealer in times of distress, that I restrict the solution space to

the cases where πc > πg.

Note that this is not a convex problem, as multiple factors interact to determine the realized

spreads. Their impact is often non-monotonic. For instance, an increase in π pushes spreads up

by increasing informed players’ monopolistic power, but may also decrease them by emboldening

the uninformed to bid more aggressively and pose competition. To address the non-convexity, I

search for the missing parameters using a particle swarm algorithm.

In each iteration of the algorithm, I guess the four parameters and add them to the other

parameters of the model that were pinned down in earlier stages of the calibration. Then, I plug

the parameters into the model to derive the average spread for each state, i ∈ {r, c}, and for

markets with n ∈ {1, 2, 3} dominant dealers. Specifically, I make use of the informed dealers’

optimality condition (eq. 7) to pin down the probability of submitting a bid that appeals only

to the distressed players (F (vh − R̄r)), and plug in the result I attain into the realized spread

equation derived in Theorem 3.7. For further details, see the appendix. Lastly, I calculate the

18.

4.1 Calibration Results

The full list of model parameters appear in Table 11. In calibrating the model to replicate the

behavior of spreads, I find that ξc = 0.55, that is, in a crisis, 55% of the sellers are distressed.

Further, δs = 0.00165, that is, those sellers are willing to sell the asset at a discount of 165 due

to pressing liquidity needs. Note that this is about twice the decline in value that prompts

regular sellers to sell, of 83 bps (δr = 0.83). Alongside, the likelihood that a dealer fails to bid,

π, is 0.35 in normal times, and 0.49 in a crisis. Hence, systemic distress raises this likelihood by

42%. Recalling that the likelihood embeds both higher holding costs and search frictions and
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that the latter are less affected by the crisis, these seem like reasonable estimates.

Variable Value Interpretation Corresponding Mo-

ment/Source

qgh 0.87 Pr. that a bond is of high

quality, normal times

Pr.(downgraded | rating updated)

pre-crisis.

qch 0.82 As above, crisis As above, crisis

vgl 0.99 Value of a low quality

bond, normal times

Expected change in the D2D price

following a downgrade (pre-crisis)

vcl 0.89 As above, crisis As above, (crisis)

δr 0.0083 Liquidity shock incurred

by non-distressed cus-

tomers

Chen et al. (2018)

δs 0.0165 Liquidity shock incurred

by distressed customers

crisis spreads.

ξg 0 Share of distressed cus-

tomers in normal times

(Unidentified).

ξc 0.55 As above, crisis Change in volume

πg 0.35 Prob. that the dealer does

not submit a bid in nor-

mal times

Pre-crisis spreads.

πc 0.49 As above, crisis crisis spreads.

Table 11: Calibrated model parameters.
Note: The data relied upon to generate this figure was TRACE Data provided by FINRA’s TRACE System.

In figure 18 I plot the spreads in normal times in the data (pre-crisis era) and in the model.

As we can see, the model does very well in replicating the data, both in terms of magnitude

and shape. Specifically, both produce a substantial increase in spreads in the transition from

a three-informed dealers market to a two-informed dealer market and more or less identical
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Figure 18: Spreads in the pre-crisis period: model vs. data,
Note: The data relied upon to generate this figure was TRACE Data provided by FINRA’s TRACE System.

spreads in markets with two-informed dealers versus those with a single-informed dealer.

Irrespective of the variables we chose to fit the behavior of spreads, δs, ξ
c, πg, πc, we find that

vl is higher than the value assigned to a high-quality bond by a non-distressed seller, vh − δr.

Recall that uninformed dealers will always bid weakly above vl, and hence will submit a bid

that is sufficiently high to compensate any customer. That implies that the reservation value

of sellers in this setting is not determined by their valuation of the bond, but rather by their

outside option of selling it to an uninformed dealer. As a result, the distribution of sellers’

liquidity shocks, embedded in δs, δr, and ξc has no impact on spreads in the calibrated model at

regular times. In other words, the shocks irrelevance condition, presented in Theorem 3.4, holds.

This fact also means that the assumption that I made above, that ξc = 0, is benign - it has no

implications for the behavior of the model.

Critically, among the four variables that we calibrated to fit the model to spreads in the data,

δs, ξ
c, πg, πc, the only one that has any relevance for its behavior in regular times is πg - the

probability that a dealer fails to bid. πg shapes the spreads through two channels operating in

opposite directions. First, alongside the asset composition, embedded in qgh, v
g
l , it pins down the

bid of uninformed, BU(n). The higher is πg, the weaker is the adverse selection, and the higher

is BU(n). That, in turn, improves sellers’ outside options and diminishes spreads. At the same

time, an increase in πg weakens competition between informed dealers, and by that, increases

spreads.

What happens in the calibrated model is that the transition from two dealers to one lower the

exposure of uninformed players to adverse selection and leads them to bid more aggressively.

As a result, they pose greater competition to the informed player. That offsets the increase

in spreads due to weakened competition among the informed dealers. In the transition from
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Figure 19: Spreads in a crisis period: data vs. model
Note: The data relied upon to generate this figure was TRACE Data provided by FINRA’s TRACE System.

two informed dealers to one, the size of each force is about the same, so we witness a negligible

change in spreads. In this context, note that the variable πg is calibrated to fit three different

moments - spreads in normal times for markets with one, two, and three informed players. Given

that this is the case, the good fit that the model attains cannot be taken for granted.

In figure 19, we see the behavior of spreads in crisis in the model and in the data.

In this case, the shocks irrelevance condition does not hold due to the sizeable differences in

values between high and low-quality bonds embedded in vcl = 0.89. We attain an excellent fit for

the data. That should not count for much of an achievement, as we match 3 variables, δs, ξ
c, πc,

to three moments characterizing spreads in that state. Specifically, we find that with n = 1, the

informed dealers use their monopoly power to set the spreads to equal the reservation value of

the distressed seller, vh − δs. The other two variables aim to replicate the spreads for markets

with 2 or 3 informed players.

The calibration of the model of the behavior of spreads implies an explanation as to why spreads

increase so dramatically in concentration in times of distress but change very mildly alongside

HHI in the pre-crisis period. The reason lies in the substantial growth in the gap between

the value (measured by inter-dealer price) between regular bonds and lemons, embedded in

vcl = 0.89 and vgl = 0.997. In normal times, absent a large difference between vh and vl, the risk

in purchasing an unfamiliar bond is not substantial enough to drive out uninformed dealers

from submitting relevant bids, that is, bids that are high enough to answer the liquidity needs

of all customers. Hence, customers always have the outside option of selling their assets at a

reasonable price to some dealer. This outside option imposes limits on informed dealers’ ability

to exploit their market power and charge high spreads. Specifically, it prevents them from

gaining any business by submitting low bids that only appeal to the distressed.
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In other words, in the pre-crisis period, the adverse selection problem of the uninformed is

much less dire. Hence, the uninformed can (and does) submit bids that are high enough to

appeal to customers who hold a high-quality bond. The customer’s outside option of attaining a

reasonable deal when trading with the uninformed limits informed dealers’ ability to exercise

market power and bid low.

Now, I turn to compare the implications of the model for the behavior of volume change in

response to the crisis to what we find in the data itself. Note that volume change, in contrast to

spreads, was not a target in the calibration.

To allow for this comparison, I first need to create a volume change measure that applies to

analogous objects in the model and in the data. The issue here is that while the model assumes

that the measure of sellers, µs, is the same in the pre-crisis and the crisis period, in the data

that need not (and probably is not) the case. Thus, to keep the two comparable, I define the

data volume change in trades of bonds in markets with n informed players by:

δV (n) = Vr,nαVc,n

Where Vr,n denotes the volume traded in such bonds in the pre-crisis period, Vc,n the volume

traded in those bonds in the crisis period, and α > 0 being a multiplier used for adjustment.

One natural candidate to α would be the ratio between the length of the pre-crisis period and

the crisis period. While this should improve the measure, However, it ignores the fact that

during the crisis, the daily demand for liquidity is probably higher. Another alternative would

be to use α so that the aggregate volume in both periods would be about the same. The problem

with doing so is that aggregate volume is an endogenous variable and in fact, the variable we

want to study. Thus, I set α > 0 to be a positive number so that highly competitive markets,

that is, those in which HHI < 0.3, experience no volume. This is consistent with the model, in

which as n increases, one converges towards competitive pricing in which all demand for liquidity

gets answered. I find that α = 7.5.

In figure 20, I plot the δV (n) for the data and for the calibrated model. As we can see, the

model replicates the data with a very high level of precision. That occurs in spite of the fact

that volume was not a target for the calibration.
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Figure 20: Volume response to the crisis: data vs. model
Note: The data relied upon to generate this figure was TRACE Data provided by FINRA’s TRACE System.

A conservative interpretation of this result is that the differences in the response of volume to

systemic distress across markets with varying levels of competition resemble what we would

have expected to find if the forces that underlie them are indeed those that govern the model:

(i) limited capacity of the informed dealers, and (ii) a strategical choice of dealers to submit

bids that target only distressed sellers.

Granted, the co-movement of volume and spreads across markets with varying levels of compe-

tition is already baked into the model from the get-go. Yet, while the model structure might

determine the shape, it cannot determine exact values. Hence, the success in replicating volume

not only in its shape but also in absolute sizes is not, ex-ante guaranteed. Thus, it provides

some evidence in favor of the theory that the model embeds.

Furthermore, note the sizeable differences in the response of volume across markets with varying

levels of concentration. If the decline in volume indeed originates from concentration, as suggested

here, even low concentration levels as HHI ∈ [0.3, 0.4] lead to a 15% decline in trade volume,

while higher levels are associated with an even greater decline. Recalling that 75% of the bonds

have an HHI that is greater than 0.3, this can be taken to indicate that concentration has

a sizeable contribution to the decline in trade volume (’market freeze’) in times of systemic

distress.

4.2 Counterfactuals

4.2.1 No Change in Risk, vl, qh

To have a better understanding of the critical importance of risk to our mechanism, I run

another simulation of the model in which systemic distress is not characterized by a change
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in the riskiness of assets or in the cost of bearing risk. I do so by setting vcl and qch to equal

vgl , q
g
h correspondingly. Besides that, I am using the calibrated values appearing in Table 11.

In this setting, systemic distress means two things: (i) a decline in dealers’ capacity to absorb

inventories, embedded in the rise in π between the pre-crisis and the crisis period, and (ii)

stronger demand for liquidity by customers, reflected in an increase in the share of distressed

sellers, ξ. As we shall see, absent a rise in risk these forces do not imply any substantial

correlation between concentration and liquidity during distress.

In figure 21 I plot the predicted behavior of spreads during a crisis when assuming no changes in

vl, qh in response to a crisis. As a benchmark, I plot next to it the prediction from the original

model used above, which is the one that incorporates all the calibrated values. In figure 22, I do

the same with volume change.
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Figure 21: Spreads in the crisis period: model with and without changes in
assets composition
Note: The data relied upon to generate this figure was TRACE Data provided by FINRA’s TRACE System.
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Figure 22: Volume response to the crisis: model with and without changes
in asset composition
Note: The data relied upon to generate this figure was TRACE Data provided by FINRA’s TRACE System.

In the figure, we can see that absent an increase in uncertainty, the simulation implies results

that are both quantitatively and qualitatively different. Volume is not affected at all since any

customer that is not serviced by the informed can (and does) end up trading with someone that

is uninformed. Spreads in crisis times are actually somewhat lower compared to the pre-crisis

period. The reason is that the capital shortage among informed dealers increases the likelihood

that a customer who trades with the uninformed is holding a high-quality bond. As a result,
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the uninformed bid more aggressively. That results in shifting the lower bound of the bid of the

informed to a higher point. This mechanism can also explain the surprising fact that in this

setting, spreads are declining in the transition from 2 informed players to 1 (!).

These results highlight the strong connection between an increase in uncertainty and the impact

of market power on the performance of OTC markets. In times of heightened uncertainty, market

power has a much more substantial impact. This happens because, in such times, informed

dealers are not constrained by the threat of business stealing by the uninformed. We find a

very substantial rise in the cost of risk during the Covid-19 crisis. When we examine this rise

through the lens of our model, we find that it was an essential condition for the co-movements

of market power with spreads and volume that we find in the data.

4.2.2 No Change in Dealers’ Capacity, π

Now, let us study what would have happened if there was no change in the likelihood that a

dealer successfully submits a bid. That is, consider a case in which πc = πc. Hence, a crisis is

merely a change in the demand for liquidity, embedded in ξ, and in the level of adverse selection,

implied by vgl , v
c
l , q

g
h, q

c
h.

Note that in our model, π captures the impact of dealers’ capital constraints on spreads and

volume. As we explained above, dealers’ holding costs do not impact the gap between the

inter-dealer price and the customer-to-dealer price directly. However, it may affect it indirectly

by making it harder for the customer to find a dealer who will have the needed liquidity to

buy the security. In our model, this is captured by π. Note that the assumption that capital

constraints are a property that our model shares with canonical search-theory models in the

spirit of Duffie et al. (2005). In the few models that embed holding cost into a search framework

(for instance, Cohen et al. (2022)), an increase in holding costs increases spreads by making it

harder to find a dealer that can answer the customer’s demand.

In Figures 23 and 24 I plot the behavior of spreads in a crisis and of volume change for a

simulation in which I fix π alongside the same variables in the benchmark model. We see that

the interaction of capital constraints and market power has a substantial impact on the behavior

of spreads during a crisis. Absent a change in dealers’ capital constraint, the increase in spreads
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due to market power is lower but still sizeable at about 50% of what it would have been if the

capital constraints were in place. Similarly, the decline in volume across bonds with varying

levels of concentration is milder but yet substantial. For bonds with an HHI between 0.3-0.4,

the decline without tightening capital constraints is 11%, rather than 15% in their presence,

for bonds with an HHI between 0.4-0.6 it is 23% rather than 35%, and for bonds with an HHI

greater than 0.6 it is 48% rather than 71%.
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Figure 23: Spreads in the crisis period: model with and without tightening
capital constraints
Note: The data relied upon to generate this figure was TRACE Data provided by FINRA’s TRACE System.
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Figure 24: Volume response to the crisis: model with and without tightening
capital constraints.
Note: The data relied upon to generate this figure was TRACE Data provided by FINRA’s TRACE System.

In other words, without tightening dealers’ capital limitations, the impact of concentration on

liquidity in dealer markets is lessened. This occurs because such constraints can incapacitate

some dealers, reducing competition for the remaining ones. The more moderate shift in volume

and spreads during distress in a simulation that sets πc = πg highlights the significance of capital

constraints in creating monopolistic inefficiencies in OTC markets during crises. Simultaneously,

we see that even without increased capital restrictions, concentration significantly exacerbates

the decline in liquidity during systemic distress. This is due to other factors that enhance dealers’

competitive edge during a crisis, particularly the heightened uncertainty and the urgent demand

for liquidity among their clients. The takeaway is that alleviating dealers’ capital constraints is

insufficient to restore liquidity.
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5 Conclusion

The main takeaway from the paper is that concentration in OTC markets may very well be a

concern for financial stability. The dramatic decline in the performance of these markets in a

crisis, embedded in higher spreads and lower volumes, seems to be driven, to some extent, by

dealers preying on the dire need for liquidity to charge higher markups for their services. In

that sense, events of “market freeze” should be understood in terms of monopolistic inefficiency

Another significant insight is the highly segmented nature of intermediation in the bond market.

It underscores that dealers’ capital does not fluidly circulate from one bond to another. The

restricted flow of liquid funds among dealers could significantly disrupt the market, while

increased trading activities by some dealers might not adequately counterbalance the reduced

activities of others. This emphasizes the importance of heterogeneity in dealers’ performance,

which might be more impactful to the market than previously assumed.

Lastly, this paper brings to light an unanticipated process by which adverse selection amplifies

market power and heightens losses from monopolistic inefficiency. The vital role of adverse

selection contrasts starkly with the dealers’ capacity constraints, which are deemed non-essential

for trade to become “clogged” within the dealer sector. Consequently, an unexpected implica-

tion arises that merely alleviating the tightening of dealers’ capacity constraints might prove

insufficient to restore market liquidity.
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Dependent Variable: spread
COVID-19 Crisis GRC

Model: (1) (2) (3) (4) (5) (6)

Variables
HHI 5.7∗∗∗ (1.4) 13.7∗∗∗ (1.1) 0.64 (0.92) -0.01 (5.9) 9.3∗∗ (4.1) -0.21 (3.2)
HHI × crisis indicator 27.6∗∗∗ (8.4) 92.0∗∗∗ (9.8) -43.2∗∗∗ (9.6) 2.0 (8.4) 16.0∗∗∗ (5.7) -8.4∗ (4.3)
rule 144a -2.2∗∗∗ (0.78) -7.1∗∗∗ (0.60) 3.1∗∗∗ (0.53) -2.0 (2.1) -30.0∗∗∗ (3.1) 18.0∗∗∗ (2.9)
sqrt(age) 0.08∗∗∗ (0.02) -0.11∗∗∗ (0.01) 0.25∗∗∗ (0.01) 0.19∗∗∗ (0.04) -0.36∗∗∗ (0.04) 0.55∗∗∗ (0.03)
sqrt(time to maturity) 0.28∗∗∗ (0.01) 0.20∗∗∗ (0.01) 0.35∗∗∗ (0.01) 0.47∗∗∗ (0.06) 0.48∗∗∗ (0.03) 0.49∗∗∗ (0.02)
sqrt amtout issr −1.9× 10−5∗∗∗ (3.3× 10−6) −5.1× 10−5∗∗∗ (2× 10−6) 1× 10−5∗∗∗ (1.6× 10−6) −4.8× 10−6 (5× 10−6) −1.9× 10−5∗∗∗ (4.7× 10−6) 6.1× 10−7 (3.1× 10−6)
sqrt(amount outstanding) -0.0001∗∗∗ (1.1× 10−5) -0.0002∗∗∗ (1× 10−5) −6.8× 10−7 (8× 10−6) -0.0002∗∗ (7.3× 10−5) -0.0004∗∗∗ (5.9× 10−5) 1.6× 10−5 (4.6× 10−5)
coupon rate 0.33 (0.26) 2.3∗∗∗ (0.15) -1.6∗∗∗ (0.13) -0.14∗ (0.07) -0.04 (0.06) -0.23∗∗∗ (0.05)
foreign -0.07 (0.64) -1.3∗∗ (0.68) 1.2∗∗ (0.58) -6.3∗∗ (2.5) -7.8∗∗∗ (2.1) -1.7 (1.7)
global 0.41 (0.38) -0.52∗∗ (0.26) 1.2∗∗∗ (0.21) -2.2∗∗∗ (0.74) -10.2∗∗∗ (0.87) 5.0∗∗∗ (0.63)
finance 0.28 (0.37) -1.9∗∗∗ (0.29) 2.0∗∗∗ (0.27) 14.1∗∗∗ (2.2) 9.0∗∗∗ (1.0) 12.4∗∗∗ (0.77)
utility -0.71 (1.2) -3.0∗∗∗ (0.57) 1.6∗∗∗ (0.49) -5.9∗∗∗ (2.0) -13.1∗∗∗ (1.7) 1.3 (1.5)

Fixed-effects
rating Yes Yes Yes Yes Yes Yes
trade size Yes Yes Yes Yes Yes Yes
dealer Yes Yes Yes Yes Yes Yes
dealer-date Yes Yes Yes Yes Yes Yes
date Yes Yes Yes Yes Yes Yes
# days traded (prv. year) Yes Yes Yes Yes Yes Yes
# days traded (prv. year)-date Yes Yes Yes Yes Yes Yes
rating-date Yes Yes Yes Yes Yes Yes
trade size-date Yes Yes Yes Yes Yes Yes

Fit statistics
Observations 1,375,793 656,133 719,660 621,479 271,191 350,288
R2 0.11938 0.25548 0.21531 0.19310 0.36171 0.36307
Within R2 0.00693 0.00936 0.01212 0.00485 0.00735 0.00997

Clustered (rating) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Table 12: Results from applying the standard model (eq 4) to the Covid-19
crisis and the period proceeding it and to the GRC and the period proceeding
it; Full.
Note: The data relied upon to generate this table was TRACE Data provided
by FINRA's TRACE System
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6 Empirical Results Appendix:

Dependent Variable: spread

Model: (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Variables

HHI 10.1∗∗∗ (1.1) 16.4∗∗∗ (1.7) 18.1∗∗∗ (1.7) 18.4∗∗∗ (1.5) 17.6∗∗∗ (1.6) 18.4∗∗∗ (1.5) 18.5∗∗∗ (1.5) 18.3∗∗∗ (1.5) 16.8∗∗∗ (1.5) 16.3∗∗∗ (1.5)

HHI × crisis indicator 159.5∗∗∗ (0.83) 108.6∗∗∗ (11.6) 108.0∗∗∗ (11.6) 87.9∗∗∗ (11.1) 85.9∗∗∗ (11.5) 89.0∗∗∗ (10.9) 89.0∗∗∗ (10.9) 90.9∗∗∗ (10.6) 91.7∗∗∗ (10.5) 88.4∗∗∗ (10.1)

(Intercept) 13.8∗∗∗ (0.64)

rule 144a -9.1∗∗∗ (0.34) -9.8∗∗∗ (1.1) -9.2∗∗∗ (1.2) -9.5∗∗∗ (1.2) -7.9∗∗∗ (1.1) -7.9∗∗∗ (1.0) -7.8∗∗∗ (1.0) -7.7∗∗∗ (1.0) -7.0∗∗∗ (0.98) -7.0∗∗∗ (0.92)

sqrt(age) -0.14∗∗∗ (0.007) -0.15∗∗∗ (0.02) -0.14∗∗∗ (0.02) -0.15∗∗∗ (0.02) -0.08∗∗∗ (0.02) -0.06∗∗∗ (0.02) -0.07∗∗∗ (0.02) -0.07∗∗∗ (0.02) -0.11∗∗∗ (0.02) -0.12∗∗∗ (0.02)

sqrt amtout issr −5.7× 10−5∗∗∗ (1.4× 10−6) −5.2× 10−5∗∗∗ (2.8× 10−6) −5.1× 10−5∗∗∗ (3× 10−6) −5.2× 10−5∗∗∗ (3× 10−6) −5.3× 10−5∗∗∗ (3× 10−6) −5.3× 10−5∗∗∗ (3.1× 10−6) −5.3× 10−5∗∗∗ (3.1× 10−6) −5.2× 10−5∗∗∗ (3× 10−6) −4.9× 10−5∗∗∗ (2.9× 10−6) −4.9× 10−5∗∗∗ (2.9× 10−6)

sqrt(time to maturity) 0.07∗∗∗ (0.002) 0.07∗∗∗ (0.01) 0.07∗∗∗ (0.010) 0.07∗∗∗ (0.010) 0.24∗∗∗ (0.03) 0.24∗∗∗ (0.03) 0.24∗∗∗ (0.03) 0.24∗∗∗ (0.03) 0.24∗∗∗ (0.03) 0.23∗∗∗ (0.03)

sqrt(amount outstanding) -0.0001∗∗∗ (6.1× 10−6) -0.0002∗∗∗ (1.3× 10−5) -0.0002∗∗∗ (1.9× 10−5) -0.0002∗∗∗ (1.9× 10−5) -0.0003∗∗∗ (2× 10−5) -0.0003∗∗∗ (1.8× 10−5) -0.0003∗∗∗ (1.8× 10−5) -0.0003∗∗∗ (1.8× 10−5) -0.0003∗∗∗ (1.7× 10−5) -0.0003∗∗∗ (1.7× 10−5)

coupon rate 3.4∗∗∗ (0.07) 3.3∗∗∗ (0.19) 3.3∗∗∗ (0.19) 3.3∗∗∗ (0.19) 1.4∗∗∗ (0.22) 1.5∗∗∗ (0.19) 1.5∗∗∗ (0.19) 1.5∗∗∗ (0.19) 1.7∗∗∗ (0.19) 1.7∗∗∗ (0.19)

foreign -5.9∗∗∗ (0.47) -5.5∗∗∗ (0.79) -5.7∗∗∗ (0.82) -5.3∗∗∗ (0.81) -1.5∗ (0.86) -1.8∗∗ (0.81) -1.8∗∗ (0.81) -1.8∗∗ (0.81) -1.6∗∗ (0.81) -1.8∗∗ (0.83)

global 0.18 (0.20) 0.04 (0.40) -0.03 (0.40) -0.007 (0.40) 0.04 (0.29) -0.14 (0.27) -0.18 (0.27) -0.21 (0.27) -0.22 (0.27) -0.34 (0.28)

finance -4.8∗∗∗ (0.22) -4.5∗∗∗ (0.43) -4.5∗∗∗ (0.42) -4.5∗∗∗ (0.42) -1.2∗∗∗ (0.42) -1.1∗∗∗ (0.42) -1.1∗∗∗ (0.42) -1.2∗∗∗ (0.41) -1.2∗∗∗ (0.41) -1.3∗∗∗ (0.40)

utility -5.7∗∗∗ (0.39) -5.6∗∗∗ (0.93) -5.3∗∗∗ (0.89) -5.4∗∗∗ (0.83) -4.6∗∗∗ (0.73) -3.8∗∗∗ (0.63) -3.7∗∗∗ (0.63) -3.7∗∗∗ (0.63) -3.3∗∗∗ (0.62) -2.9∗∗∗ (0.62)

Fixed-effects

date Yes Yes Yes Yes Yes Yes Yes Yes Yes

# days traded (prv. year) Yes Yes Yes Yes Yes Yes Yes Yes

# days traded (prv. year)-date Yes Yes Yes Yes Yes Yes Yes

rating Yes Yes Yes Yes Yes Yes

rating-date Yes Yes Yes Yes Yes

trade size Yes Yes Yes Yes

trade size-date Yes Yes Yes

dealer Yes Yes

dealer-date Yes

Fit statistics

Observations 883,600 883,600 883,600 883,600 874,895 874,895 874,895 874,895 874,895 874,895

R2 0.04993 0.10811 0.10832 0.12570 0.12957 0.17713 0.17758 0.18346 0.19354 0.23565

Within R2 0.01238 0.01053 0.01030 0.00983 0.01007 0.01008 0.01007 0.00967 0.00941

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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7 Proofs appendix:

7.0.1 Proof of lemma 3.1

Proof. For the proof, we use the informed player optimality condition (eq. 7) to write:

n−1∑
k

(
n− 1

k

)
πn−1−k(1− π)kFn(B)k(vh −B) = πn−1δr =

pin−1δr
π

The denominator of the last term equals πnδr, that is, exactly the value of bidding vh − δr when

the market is populated with n+ 1 informed players. Applying eq. 7 once again, we get:

n−1∑
k

(
n− 1

k

)
πn−1−k(1− π)kFn(B)k(vh −B) =

pin−1δr
π

=

∑n
k

(
n
k

)
πn−k(1− π)kFn+1(B)k

π
=

n∑
k

(
n

k

)
πn−1−k(1− π)kFn+1(B)k

Which can be further simplified to:

n−1∑
k

(
n− 1

k

)
πn−1−k(1− π)kFn(B)k(vh −B) =

n∑
k

n

n− k

(
n− 1

k

)
πn−1−k(1− π)kFn+1(B)k >

n−1∑
k

(
n− 1

k

)
πn−1−k(1− π)kFn+1(B)k

An inequality that implies: Fn(B) > Fn+1(B).

7.0.2 Proof of lemma 3.2

Proof. Uninformed players outbid any bid below BU . Hence, such a bid yields zero payoff. Also,

no matter how the informed acts, there is always a probability of at least (1 − πn) ∗ (1 − qh)

that a bond bought by the uninformed is of low quality. Hence BU < vh. Thus, there exists a

ϵ > 0 such that bidding vh − ϵ > BU when the quality is good yields a strictly positive return

for the informed. Given this option, bidding below BU and getting zero violates optimality.
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7.0.3 Proof of lemma 3.3

Proof. If πnqh
πnqh+(1−qh)

> 1− δ
vh−vl

we find that:

ν(n∗) =
πn∗

qh
πn∗qh + 1− qh

vh + (1− πn∗
qh

πn∗qh + 1− qh
)vl > vh − δr

Where ν(n∗) is the expected value of the bond given that the informed always bids above it.

If BU(n∗) < ν there exists a bid, ν(n∗)− ϵ > vh such that bidding generates strictly positive

expected payoff to the uninformed - contradicting optimality. Of course, if BU (n∗) is above ν we

violate the demand that the uninformed bid is not a losing bet. BU (n∗) itself satisfies optimality

- deviating to bidding something lower yields zero while bidding anything higher means getting

less than zero in expectation.

Assume that condition 10 does not hold. It is plain to see that, in this case, the informed cannot

break even by giving any bid that may appeal to non-distressed players. If 12 holds, we can

show that the uninformed will submit a bid that breaks even that appeals only to distressed

customers based on the same logic explained above.

If neither condition holds, BU (n∗) < vh − δs and the uninformed bid never wins the high-quality

bond. Any bid above vl will mean paying more than the expected value, while any bid below it

will generate a strictly positive payoff, implying the existence of a profitable deviation.

7.0.4 Proof for lemma 3.5

Proof. The claim states that if informed dealers target only the distressed players with some

positive probability, they must entirely refrain from submitting bids on the higher interval range

[vh− δs, vh− δ]. The intuition is simple: bidding even a bit higher and winning access to another

market segment, that is, the non-distressed players, is preferable.

Note that it can never be the case that F () is strictly increasing on an interval (vh−δ−ϵ, vh−δ+ϵ).

If there was a range ϵ such that the profits from buying at a bid of vh − δ + ϵ from all customers

would strictly dominate buying only from distressed players (ξ of the population) for vh−δ−ϵ.
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7.0.5 Proof of lemma 3.6

Proof. Let ξ > δ
(vh−R̄d)πn−1 . Set B

I = R̄d. Note that our assumption implies:

ξ(vh − R̄d)πn−1 > vh − (vh − δ)

The LHS is the expected return from bidding R̄d, while the RHS is the return from submitting

the bid vh − δ when all other informed players refrain from targeting this market segment. The

inequality suggests two things: (i) there is no profitable deviation to soliciting the non-distressed

players, as even the best one available is not sufficient, and (ii) by continuity, we can find: B̄I

such that:

ξ(vh − R̄d)πn−1 = vh − (vh − B̄I); and B̄I < vh − δ

Next, assume that: ξ < δ
(vh−R̄d)

. Thus:

ξ(vh − R̄d)πn−1 < vh − (vh − δ)πn−1

Where the RHS is the return of bidding vh − δ (recall that informed dealers only submit bids

that are higher than vh − δ). At the same time, the LHS is the return of the most profitable

deviation from this equilibrium into the range in which only the distressed buy. We can see

that there is no profitable deviation. From here, we can construct the complete equilibrium as

usual. We can negate the existence of other equilibria in the following way. If there was an

equilibrium in which some dealers were bidding below vh − δ, these bids would have won with a

lower likelihood than vh − δ and would not be accepted by non-distressed. Also, someone would

always bid R̄d. Using the equation above, we can show the rest.

Last, let ξ ∈ ( δ
(vh−R̄d)

, δ
(vh−R̄d)πn−1 ). Let B̄

I
d denote the highest bid that an informed player gives

that is accepted only by distressed customers. Note that it is the lowest bid only when vh − δ is

the lowest bid. Thus:

(vh − (vh − δ)) = ξ(vh − B̄I
s )

Or:

B̄I
s = vh −

δ

ξ
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Now, we need to ensure that the interval [Bi
s, B̄

I
s ] is not empty. That is:

B̄I
s = vh −

δ

ξ
≥ R̄d

Which is satisfied by:

ξ ≥ δ

vhbybarRd

Also, note that trivially B̄I
s < vh − δ as required. Thus, we can build an equilibrium in which

some bids are accepted by all sellers and some only by the distressed ones.

It is plain to see that we cannot construct an equilibrium with trades only with the distressed

guys since that requires that ξ ≥ δ
(vh−R̄d)πn−1 (see above). Similarly, we cannot construct an

equilibrium in which all bids are accepted by the non-distressed as this will require ξ < δ
(vh−R̄d)

7.0.6 Proof of theorem 3.7

Proof. We know from the indifference condition that whenever an informed player bids on a

high-quality asset, its expected return is:

πn−1(vh − R̄D)

The total expected return is the number of bids that the dealer gets to submit multiplied by the

expected return from each bid, or:

Expected profit = nm. of bids× expected profit from bidding = µs(1− π)πn−1(vh − R̄D)

The total realized return is the number of trades the dealer conducted multiplied by the average

spread per trade. The average spread will be denoted by: S̄I(n). Note that the average spread

measures the realized prices at which bonds were bought rather than the submitted bids.

From symmetry between the informed dealers, each executes 1/n of the trades they do as a

group. To compute the total volume the group trades, note that there are two scenarios in which

a customer is not trading with an informed dealer: (i) None of them submits a bid ( prob. of
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πn). or, (ii) the bids they submitted are below the customer reservation value. Specifically, the

customer got hit by a mild liquidity shock (δr) while the bids are such that they appeal only to

players that are in distress (shock of δs). The likelihood that any of these scenarios take place is:

πn + (1− πn) ∗ (1− ξ)
n∑

k=1

(
n

k

)
πn−k(1− π)k(F (vh − δr))

k

Recalling that the total measure of customers in the market is µs, we find that the total volume

of trade facilitated by the informed is:

V i(n) = µs(π
n + (1− πn) ∗ (1− ξ)

n∑
k=1

(
n

k

)
πn−k(1− π)k(F (vh − δr))

k)

Now, we can pin down the realized profit of the informed dealer:

Realized profit = measure of buys by the dealer× avg. spread earned when selling =

V i(n)

n
∗ S̄i(n) = (1− πn − (1− πn) ∗ (1− ξ)

n∑
k=1

(
n

k

)
πn−k(1− π)k(F (vh − δr))

k ∗ µs

n
∗ S̄i(n)

Since there is a continuum of customers, the dealer’s total expected profit from trade equals its

total realized profit. Equating the two terms, we get:

(1−πn−(1−πn)∗(1−ξ)
n∑

k=1

(
n

k

)
πn−k(1−π)k(F (vh−δr))

k∗µs

n
∗S̄i(n) = µs(1−π)πn−1(vh−R̄D)

Rearranging:

Ŝi(n) =
n(1− π)πn−1(vh − R̄s)

V i(n)

Where:

V i(n) = (1− πn)[1− (1− ξ)
n∑

k=1

(
n

k

)
πn−k(1− π)k(F (vh − δ))k]

Using the same logic, we find that when all bids submitted by the informed are more significant

than vh − δr:

Si(n) =
n(1− π)πn−1(vh − R̄r

n)

1− πn
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When all the bids it submits are below vh − δr:

Si(n) =
n(1− π)πn−1(vh − R̄s

n)

1− πn
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